机器人传感器与执行器连接权的演化

J. Molina, A. Berlanga, A. Sanchis, P. Isasi
{"title":"机器人传感器与执行器连接权的演化","authors":"J. Molina, A. Berlanga, A. Sanchis, P. Isasi","doi":"10.1109/ISIE.1997.649054","DOIUrl":null,"url":null,"abstract":"In this paper, an evolution strategy (ES) is introduced, to learn reactive behaviour in autonomous robots. An ES is used to learn high-performance reactive behaviour for navigation and collisions avoidance. The learned behaviour is able to solve the problem in a dynamic environment; so, the learning process has proven the ability to obtain generalised behaviours. The robot starts without information about the right associations between sensors and actuators, and, from this situation, the robot is able to learn, through experience, to reach the highest adaptability grade to the sensors information. No subjective information about \"how to accomplish the task\" is included in the fitness function. A mini-robot Khepera has been used to test the learned behaviour.","PeriodicalId":134474,"journal":{"name":"ISIE '97 Proceeding of the IEEE International Symposium on Industrial Electronics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evolving connection weights between sensors and actuators in robots\",\"authors\":\"J. Molina, A. Berlanga, A. Sanchis, P. Isasi\",\"doi\":\"10.1109/ISIE.1997.649054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an evolution strategy (ES) is introduced, to learn reactive behaviour in autonomous robots. An ES is used to learn high-performance reactive behaviour for navigation and collisions avoidance. The learned behaviour is able to solve the problem in a dynamic environment; so, the learning process has proven the ability to obtain generalised behaviours. The robot starts without information about the right associations between sensors and actuators, and, from this situation, the robot is able to learn, through experience, to reach the highest adaptability grade to the sensors information. No subjective information about \\\"how to accomplish the task\\\" is included in the fitness function. A mini-robot Khepera has been used to test the learned behaviour.\",\"PeriodicalId\":134474,\"journal\":{\"name\":\"ISIE '97 Proceeding of the IEEE International Symposium on Industrial Electronics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISIE '97 Proceeding of the IEEE International Symposium on Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.1997.649054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISIE '97 Proceeding of the IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.1997.649054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了一种进化策略(ES)来学习自主机器人的反应行为。ES用于学习导航和避免碰撞的高性能反应行为。学习行为能够在动态环境中解决问题;因此,学习过程已经证明了获得广义行为的能力。机器人开始时没有关于传感器和执行器之间正确关联的信息,并且在这种情况下,机器人能够通过经验学习,达到对传感器信息的最高适应等级。适应度函数中不包含“如何完成任务”的主观信息。一个微型机器人Khepera被用来测试这种习得行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving connection weights between sensors and actuators in robots
In this paper, an evolution strategy (ES) is introduced, to learn reactive behaviour in autonomous robots. An ES is used to learn high-performance reactive behaviour for navigation and collisions avoidance. The learned behaviour is able to solve the problem in a dynamic environment; so, the learning process has proven the ability to obtain generalised behaviours. The robot starts without information about the right associations between sensors and actuators, and, from this situation, the robot is able to learn, through experience, to reach the highest adaptability grade to the sensors information. No subjective information about "how to accomplish the task" is included in the fitness function. A mini-robot Khepera has been used to test the learned behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信