自适应机器人行为的在线进化

Fernando Silva, P. Urbano, A. Christensen
{"title":"自适应机器人行为的在线进化","authors":"Fernando Silva, P. Urbano, A. Christensen","doi":"10.4018/ijncr.2014040104","DOIUrl":null,"url":null,"abstract":"The authors propose and evaluate a novel approach to the online synthesis of neural controllers for autonomous robots. The authors combine online evolution of weights and network topology with neuromodulated learning. The authors demonstrate our method through a series of simulation-based experiments in which an e-puck-like robot must perform a dynamic concurrent foraging task. In this task, scattered food items periodically change their nutritive value or become poisonous. The authors demonstrate that the online evolutionary process, both with and without neuromodulation, is capable of generating controllers well adapted to the periodic task changes. The authors show that when neuromodulated learning is combined with evolution, neural controllers are synthesised faster than by evolution alone. An analysis of the evolved solutions reveals that neuromodulation allows for a more effective expression of a given topology's potential due to the active modification of internal dynamics. Neuromodulated networks learn abstractions of the task and different modes of operation that are triggered by external stimulus.","PeriodicalId":369881,"journal":{"name":"Int. J. Nat. Comput. Res.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Online Evolution of Adaptive Robot Behaviour\",\"authors\":\"Fernando Silva, P. Urbano, A. Christensen\",\"doi\":\"10.4018/ijncr.2014040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose and evaluate a novel approach to the online synthesis of neural controllers for autonomous robots. The authors combine online evolution of weights and network topology with neuromodulated learning. The authors demonstrate our method through a series of simulation-based experiments in which an e-puck-like robot must perform a dynamic concurrent foraging task. In this task, scattered food items periodically change their nutritive value or become poisonous. The authors demonstrate that the online evolutionary process, both with and without neuromodulation, is capable of generating controllers well adapted to the periodic task changes. The authors show that when neuromodulated learning is combined with evolution, neural controllers are synthesised faster than by evolution alone. An analysis of the evolved solutions reveals that neuromodulation allows for a more effective expression of a given topology's potential due to the active modification of internal dynamics. Neuromodulated networks learn abstractions of the task and different modes of operation that are triggered by external stimulus.\",\"PeriodicalId\":369881,\"journal\":{\"name\":\"Int. J. Nat. Comput. Res.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Nat. Comput. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijncr.2014040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Nat. Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijncr.2014040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

作者提出并评估了一种自主机器人神经控制器在线合成的新方法。作者将权重和网络拓扑的在线进化与神经调节学习相结合。作者通过一系列基于仿真的实验证明了我们的方法,在这些实验中,一个类似电子冰球的机器人必须执行动态并发觅食任务。在这项任务中,分散的食物会周期性地改变它们的营养价值或变得有毒。作者证明了在线进化过程,无论有无神经调节,都能够产生适应周期性任务变化的控制器。作者表明,当神经调节学习与进化相结合时,神经控制器的合成速度比单独进化要快。对进化解决方案的分析表明,由于内部动力学的主动修改,神经调节允许更有效地表达给定拓扑的潜力。神经调节网络学习任务的抽象和由外部刺激触发的不同操作模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Evolution of Adaptive Robot Behaviour
The authors propose and evaluate a novel approach to the online synthesis of neural controllers for autonomous robots. The authors combine online evolution of weights and network topology with neuromodulated learning. The authors demonstrate our method through a series of simulation-based experiments in which an e-puck-like robot must perform a dynamic concurrent foraging task. In this task, scattered food items periodically change their nutritive value or become poisonous. The authors demonstrate that the online evolutionary process, both with and without neuromodulation, is capable of generating controllers well adapted to the periodic task changes. The authors show that when neuromodulated learning is combined with evolution, neural controllers are synthesised faster than by evolution alone. An analysis of the evolved solutions reveals that neuromodulation allows for a more effective expression of a given topology's potential due to the active modification of internal dynamics. Neuromodulated networks learn abstractions of the task and different modes of operation that are triggered by external stimulus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信