基于深度Q学习的光学相干断层扫描视网膜自动检测

Alex Cazañas-Gordón, Luís A. da Silva Cruz
{"title":"基于深度Q学习的光学相干断层扫描视网膜自动检测","authors":"Alex Cazañas-Gordón, Luís A. da Silva Cruz","doi":"10.23919/eusipco55093.2022.9909830","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach to detecting the retina in optical coherence tomography (OCT) images using Deep Q learning. The proposed method uses an agent to extract contextual information from the input OCT to produce a tight-bounding box around the retina in a step-wise fashion. The detection task implements a decision process governed by a reinforcement learning strategy, where the agent takes actions and receives rewards according to their outcome. During the localization process, the agent learns the optimal set of actions to complete the detection task using a Q-network that estimates the value of the expected return of an action at any given step. Experiments on a test OCT dataset of 100 images showed that the proposed method accurately located the retina with a mean recall of 0.988 and a mean F1 score of 0.94.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Detection of the Retina in Optical Coherence Tomography using Deep Q Learning\",\"authors\":\"Alex Cazañas-Gordón, Luís A. da Silva Cruz\",\"doi\":\"10.23919/eusipco55093.2022.9909830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel approach to detecting the retina in optical coherence tomography (OCT) images using Deep Q learning. The proposed method uses an agent to extract contextual information from the input OCT to produce a tight-bounding box around the retina in a step-wise fashion. The detection task implements a decision process governed by a reinforcement learning strategy, where the agent takes actions and receives rewards according to their outcome. During the localization process, the agent learns the optimal set of actions to complete the detection task using a Q-network that estimates the value of the expected return of an action at any given step. Experiments on a test OCT dataset of 100 images showed that the proposed method accurately located the retina with a mean recall of 0.988 and a mean F1 score of 0.94.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用深度Q学习在光学相干断层扫描(OCT)图像中检测视网膜的新方法。该方法使用一个代理从输入OCT中提取上下文信息,以逐步的方式在视网膜周围产生一个紧密的边界框。检测任务实现了一个由强化学习策略控制的决策过程,其中代理采取行动并根据其结果获得奖励。在定位过程中,智能体使用q网络学习最优的动作集来完成检测任务,该网络在任何给定的步骤中估计动作的预期返回值。在100张OCT测试数据集上的实验表明,该方法准确定位视网膜,平均召回率为0.988,平均F1分数为0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Detection of the Retina in Optical Coherence Tomography using Deep Q Learning
This study presents a novel approach to detecting the retina in optical coherence tomography (OCT) images using Deep Q learning. The proposed method uses an agent to extract contextual information from the input OCT to produce a tight-bounding box around the retina in a step-wise fashion. The detection task implements a decision process governed by a reinforcement learning strategy, where the agent takes actions and receives rewards according to their outcome. During the localization process, the agent learns the optimal set of actions to complete the detection task using a Q-network that estimates the value of the expected return of an action at any given step. Experiments on a test OCT dataset of 100 images showed that the proposed method accurately located the retina with a mean recall of 0.988 and a mean F1 score of 0.94.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信