基于谱减法的计算听觉场景分析的语音增强算法

Cong Guo, Like Hui, Weiqiang Zhang, Jia Liu
{"title":"基于谱减法的计算听觉场景分析的语音增强算法","authors":"Cong Guo, Like Hui, Weiqiang Zhang, Jia Liu","doi":"10.1109/ISSPIT.2016.7886000","DOIUrl":null,"url":null,"abstract":"Computational auditory scene analysis (CASA) system is well used in speech enhancement area in recent years. We propose a new system that combines CASA and spectral subtraction to get better enhanced speech. The CASA part consists of the latest method deep neural networks (DNNs). The original way to reconstruct the denoise signal is to use the estimated masks with direct overlap-add method ignoring the information of noise within the frames. In our system, we estimate self-adapted thresholds for each channel by Gaussian Mixture Model from the estimated ratio masks (ERMs) to separate noise and speech of each channel. In this way, we make full use of the information within frames. The results show increase in both objective and subjective evaluation.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A speech enhancement algorithm using computational auditory scene analysis with spectral subtraction\",\"authors\":\"Cong Guo, Like Hui, Weiqiang Zhang, Jia Liu\",\"doi\":\"10.1109/ISSPIT.2016.7886000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational auditory scene analysis (CASA) system is well used in speech enhancement area in recent years. We propose a new system that combines CASA and spectral subtraction to get better enhanced speech. The CASA part consists of the latest method deep neural networks (DNNs). The original way to reconstruct the denoise signal is to use the estimated masks with direct overlap-add method ignoring the information of noise within the frames. In our system, we estimate self-adapted thresholds for each channel by Gaussian Mixture Model from the estimated ratio masks (ERMs) to separate noise and speech of each channel. In this way, we make full use of the information within frames. The results show increase in both objective and subjective evaluation.\",\"PeriodicalId\":371691,\"journal\":{\"name\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2016.7886000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

计算听觉场景分析(CASA)系统近年来在语音增强领域得到了很好的应用。我们提出了一种结合CASA和频谱减法的新系统,以获得更好的增强语音。CASA部分由最新方法深度神经网络(dnn)组成。原始的重建噪声信号的方法是利用直接叠加法估计的掩模,忽略帧内的噪声信息。在我们的系统中,我们使用高斯混合模型从估计的比率掩模(erm)中估计每个通道的自适应阈值,以分离每个通道的噪声和语音。这样,我们就充分利用了帧内的信息。结果表明,客观评价和主观评价均有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A speech enhancement algorithm using computational auditory scene analysis with spectral subtraction
Computational auditory scene analysis (CASA) system is well used in speech enhancement area in recent years. We propose a new system that combines CASA and spectral subtraction to get better enhanced speech. The CASA part consists of the latest method deep neural networks (DNNs). The original way to reconstruct the denoise signal is to use the estimated masks with direct overlap-add method ignoring the information of noise within the frames. In our system, we estimate self-adapted thresholds for each channel by Gaussian Mixture Model from the estimated ratio masks (ERMs) to separate noise and speech of each channel. In this way, we make full use of the information within frames. The results show increase in both objective and subjective evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信