利用双输入lstm估计路网路径的速度分布

Christopher V. H. Nielsen, Simon Makne Randers, B. Yang, N. Agerholm
{"title":"利用双输入lstm估计路网路径的速度分布","authors":"Christopher V. H. Nielsen, Simon Makne Randers, B. Yang, N. Agerholm","doi":"10.1145/3423457.3429364","DOIUrl":null,"url":null,"abstract":"Thanks to recent advances in sensor technologies, detailed travel speed information is becoming increasingly available. Such data provide a solid data foundation to capture traffic uncertainty, e.g., in the form of travel speed distributions. We study the problem of estimating travel speed distributions of paths in a road network using vehicle trajectory data. Given a path and a departure time, we aim at estimating the travel speed distribution of the path. To this end, we propose a dual-input long-short term memory (DI-LSTM) model. We introduce two new gates with the purpose of combining two input distributions in every iteration, where one distribution is an edge' distribution, and the other is the distribution of the pre-path until the edge, which is obtained from the previous DI-LSTM unit. Empirical studies on a large trajectory dataset offer insight into the design properties of the DI-LSTM and demonstrate that DI-LSTM out-performs classic LSTM, especially for long paths.","PeriodicalId":129055,"journal":{"name":"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimating travel speed distributions of paths in road networks using dual-input LSTMs\",\"authors\":\"Christopher V. H. Nielsen, Simon Makne Randers, B. Yang, N. Agerholm\",\"doi\":\"10.1145/3423457.3429364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thanks to recent advances in sensor technologies, detailed travel speed information is becoming increasingly available. Such data provide a solid data foundation to capture traffic uncertainty, e.g., in the form of travel speed distributions. We study the problem of estimating travel speed distributions of paths in a road network using vehicle trajectory data. Given a path and a departure time, we aim at estimating the travel speed distribution of the path. To this end, we propose a dual-input long-short term memory (DI-LSTM) model. We introduce two new gates with the purpose of combining two input distributions in every iteration, where one distribution is an edge' distribution, and the other is the distribution of the pre-path until the edge, which is obtained from the previous DI-LSTM unit. Empirical studies on a large trajectory dataset offer insight into the design properties of the DI-LSTM and demonstrate that DI-LSTM out-performs classic LSTM, especially for long paths.\",\"PeriodicalId\":129055,\"journal\":{\"name\":\"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3423457.3429364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM SIGSPATIAL International Workshop on Computational Transportation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3423457.3429364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于最近传感器技术的进步,详细的行驶速度信息变得越来越容易获得。这些数据为捕捉交通不确定性提供了坚实的数据基础,例如以行驶速度分布的形式。研究了利用车辆轨迹数据估计路网中路径的速度分布问题。给定路径和出发时间,我们的目标是估计路径的速度分布。为此,我们提出了一种双输入长短期记忆(DI-LSTM)模型。我们引入了两个新的门,目的是在每次迭代中结合两个输入分布,其中一个分布是边缘分布,另一个是直到边缘的预路径分布,这是由之前的DI-LSTM单元获得的。对大型轨迹数据集的实证研究提供了对DI-LSTM设计特性的深入了解,并证明了DI-LSTM优于经典LSTM,特别是对于长路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating travel speed distributions of paths in road networks using dual-input LSTMs
Thanks to recent advances in sensor technologies, detailed travel speed information is becoming increasingly available. Such data provide a solid data foundation to capture traffic uncertainty, e.g., in the form of travel speed distributions. We study the problem of estimating travel speed distributions of paths in a road network using vehicle trajectory data. Given a path and a departure time, we aim at estimating the travel speed distribution of the path. To this end, we propose a dual-input long-short term memory (DI-LSTM) model. We introduce two new gates with the purpose of combining two input distributions in every iteration, where one distribution is an edge' distribution, and the other is the distribution of the pre-path until the edge, which is obtained from the previous DI-LSTM unit. Empirical studies on a large trajectory dataset offer insight into the design properties of the DI-LSTM and demonstrate that DI-LSTM out-performs classic LSTM, especially for long paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信