{"title":"光纤电路:用光纤激光雕刻机制作高分辨率柔性和Kirigami电路的原型","authors":"Zeyu Yan, Anup Sathya, Sahra Yusuf, Jyh-Ming Lien, Huaishu Peng","doi":"10.1145/3526113.3545652","DOIUrl":null,"url":null,"abstract":"Prototyping compact devices with unique form factors often requires the PCB manufacturing process to be outsourced, which can be expensive and time-consuming. In this paper, we present Fibercuit, a set of rapid prototyping techniques to fabricate high-resolution, flexible circuits on-demand using a fiber laser engraver. We showcase techniques that can laser cut copper-based composites to form fine-pitch conductive traces, laser fold copper substrates that can form kirigami structures, and laser solder surface-mount electrical components using off-the-shelf soldering pastes. Combined with our software pipeline, an end user can design and fabricate flexible circuits which are dual-layer and three-dimensional, thereby exhibiting a wide range of form factors. We demonstrate Fibercuit by showcasing a set of examples, including a custom dice, flex cables, custom end-stop switches, electromagnetic coils, LED earrings and a circuit in the form of kirigami crane.","PeriodicalId":200048,"journal":{"name":"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fibercuit: Prototyping High-Resolution Flexible and Kirigami Circuits with a Fiber Laser Engraver\",\"authors\":\"Zeyu Yan, Anup Sathya, Sahra Yusuf, Jyh-Ming Lien, Huaishu Peng\",\"doi\":\"10.1145/3526113.3545652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prototyping compact devices with unique form factors often requires the PCB manufacturing process to be outsourced, which can be expensive and time-consuming. In this paper, we present Fibercuit, a set of rapid prototyping techniques to fabricate high-resolution, flexible circuits on-demand using a fiber laser engraver. We showcase techniques that can laser cut copper-based composites to form fine-pitch conductive traces, laser fold copper substrates that can form kirigami structures, and laser solder surface-mount electrical components using off-the-shelf soldering pastes. Combined with our software pipeline, an end user can design and fabricate flexible circuits which are dual-layer and three-dimensional, thereby exhibiting a wide range of form factors. We demonstrate Fibercuit by showcasing a set of examples, including a custom dice, flex cables, custom end-stop switches, electromagnetic coils, LED earrings and a circuit in the form of kirigami crane.\",\"PeriodicalId\":200048,\"journal\":{\"name\":\"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526113.3545652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526113.3545652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fibercuit: Prototyping High-Resolution Flexible and Kirigami Circuits with a Fiber Laser Engraver
Prototyping compact devices with unique form factors often requires the PCB manufacturing process to be outsourced, which can be expensive and time-consuming. In this paper, we present Fibercuit, a set of rapid prototyping techniques to fabricate high-resolution, flexible circuits on-demand using a fiber laser engraver. We showcase techniques that can laser cut copper-based composites to form fine-pitch conductive traces, laser fold copper substrates that can form kirigami structures, and laser solder surface-mount electrical components using off-the-shelf soldering pastes. Combined with our software pipeline, an end user can design and fabricate flexible circuits which are dual-layer and three-dimensional, thereby exhibiting a wide range of form factors. We demonstrate Fibercuit by showcasing a set of examples, including a custom dice, flex cables, custom end-stop switches, electromagnetic coils, LED earrings and a circuit in the form of kirigami crane.