基于目标函数的模糊聚类算法辨识TS模糊模型

T. Dam, A. K. Deb
{"title":"基于目标函数的模糊聚类算法辨识TS模糊模型","authors":"T. Dam, A. K. Deb","doi":"10.1109/CIEL.2014.7015742","DOIUrl":null,"url":null,"abstract":"A Fuzzy C Regression Model (FCRM) distance metric has been used in Competitive Agglomeration (CA) algorithm to obtain optimal number rules or construct optimal fuzzy subspaces in whole input output space. To construct fuzzy partition matrix in data space, a new objective function has been proposed that can handle geometrical shape of input data distribution and linear functional relationship between input and output feature space variable. Premise and consequence parameters of Takagi-Sugeno (TS) fuzzy model are also obtained from the proposed objective function. Linear coefficients of consequence part have been determined using the Weighted Recursive Least Square (WRLS) framework. Effectiveness of the proposed algorithm has been validated using a nonlinear benchmark model.","PeriodicalId":229765,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"TS fuzzy model identification by a novel objective function based fuzzy clustering algorithm\",\"authors\":\"T. Dam, A. K. Deb\",\"doi\":\"10.1109/CIEL.2014.7015742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Fuzzy C Regression Model (FCRM) distance metric has been used in Competitive Agglomeration (CA) algorithm to obtain optimal number rules or construct optimal fuzzy subspaces in whole input output space. To construct fuzzy partition matrix in data space, a new objective function has been proposed that can handle geometrical shape of input data distribution and linear functional relationship between input and output feature space variable. Premise and consequence parameters of Takagi-Sugeno (TS) fuzzy model are also obtained from the proposed objective function. Linear coefficients of consequence part have been determined using the Weighted Recursive Least Square (WRLS) framework. Effectiveness of the proposed algorithm has been validated using a nonlinear benchmark model.\",\"PeriodicalId\":229765,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIEL.2014.7015742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEL.2014.7015742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将模糊C回归模型(FCRM)距离度量用于竞争集聚(CA)算法中,在整个输入输出空间中获得最优数规则或构造最优模糊子空间。为了构造数据空间中的模糊划分矩阵,提出了一种新的目标函数,该目标函数可以处理输入数据分布的几何形状和输入输出特征空间变量之间的线性函数关系。根据所提出的目标函数,得到了Takagi-Sugeno (TS)模糊模型的前提参数和结果参数。利用加权递推最小二乘框架确定了结果部分的线性系数。通过非线性基准模型验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TS fuzzy model identification by a novel objective function based fuzzy clustering algorithm
A Fuzzy C Regression Model (FCRM) distance metric has been used in Competitive Agglomeration (CA) algorithm to obtain optimal number rules or construct optimal fuzzy subspaces in whole input output space. To construct fuzzy partition matrix in data space, a new objective function has been proposed that can handle geometrical shape of input data distribution and linear functional relationship between input and output feature space variable. Premise and consequence parameters of Takagi-Sugeno (TS) fuzzy model are also obtained from the proposed objective function. Linear coefficients of consequence part have been determined using the Weighted Recursive Least Square (WRLS) framework. Effectiveness of the proposed algorithm has been validated using a nonlinear benchmark model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信