动态环境中基于漂移处理的预测:在风力发电机基准测试中的应用

Antoine Chammas, E. Duviella, S. Lecoeuche
{"title":"动态环境中基于漂移处理的预测:在风力发电机基准测试中的应用","authors":"Antoine Chammas, E. Duviella, S. Lecoeuche","doi":"10.1109/ICMLA.2012.131","DOIUrl":null,"url":null,"abstract":"In this paper, we present a prognosis architecture that allows the computation of the Remaining Useful Life (RUL) of a failing process. A process subject to an incipient fault experiments slowly developing degradation. Sensor measurements and Condition Monitoring (CM) data extracted from the system allow to follow up the process drift. The prognosis architecture we propose makes use of a dynamical clustering algorithm to model the data in a feature space. This algorithm uses a sliding window scheme on which the model is iteratively updated. Metrics applied on the parameters of this model are used to compute a drift severity indicator, which is also an indicator of the health of the system. The architecture for prognosis is applied on a benchmark of wind turbine. The used benchmark has been constructed to serve as a realistic wind turbine model. It was used in the context of a global scale fault diagnosis and fault tolerant control competition. The benchmark also proposed a drifting fault scenario that we used to test our approach.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Prognosis Based on Handling Drifts in Dynamical Environments: Application to a Wind Turbine Benchmark\",\"authors\":\"Antoine Chammas, E. Duviella, S. Lecoeuche\",\"doi\":\"10.1109/ICMLA.2012.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a prognosis architecture that allows the computation of the Remaining Useful Life (RUL) of a failing process. A process subject to an incipient fault experiments slowly developing degradation. Sensor measurements and Condition Monitoring (CM) data extracted from the system allow to follow up the process drift. The prognosis architecture we propose makes use of a dynamical clustering algorithm to model the data in a feature space. This algorithm uses a sliding window scheme on which the model is iteratively updated. Metrics applied on the parameters of this model are used to compute a drift severity indicator, which is also an indicator of the health of the system. The architecture for prognosis is applied on a benchmark of wind turbine. The used benchmark has been constructed to serve as a realistic wind turbine model. It was used in the context of a global scale fault diagnosis and fault tolerant control competition. The benchmark also proposed a drifting fault scenario that we used to test our approach.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们提出了一个预测体系结构,允许计算失效过程的剩余使用寿命(RUL)。受初期故障影响的过程会逐渐退化。从系统中提取的传感器测量和状态监测(CM)数据允许跟踪过程漂移。我们提出的预测架构利用动态聚类算法在特征空间中对数据建模。该算法采用滑动窗口模式,迭代更新模型。应用于该模型参数的度量用于计算漂移严重性指标,该指标也是系统健康状况的指标。将该预测体系应用于某风力发电机组的基准试验。所使用的基准已被构建为一个现实的风力涡轮机模型。将其应用于全局范围的故障诊断和容错控制竞争。基准测试还提出了一个漂移故障场景,我们用它来测试我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prognosis Based on Handling Drifts in Dynamical Environments: Application to a Wind Turbine Benchmark
In this paper, we present a prognosis architecture that allows the computation of the Remaining Useful Life (RUL) of a failing process. A process subject to an incipient fault experiments slowly developing degradation. Sensor measurements and Condition Monitoring (CM) data extracted from the system allow to follow up the process drift. The prognosis architecture we propose makes use of a dynamical clustering algorithm to model the data in a feature space. This algorithm uses a sliding window scheme on which the model is iteratively updated. Metrics applied on the parameters of this model are used to compute a drift severity indicator, which is also an indicator of the health of the system. The architecture for prognosis is applied on a benchmark of wind turbine. The used benchmark has been constructed to serve as a realistic wind turbine model. It was used in the context of a global scale fault diagnosis and fault tolerant control competition. The benchmark also proposed a drifting fault scenario that we used to test our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信