促进可视化自然语言界面中的会话交互

Rishab Mitra, Arpit Narechania, A. Endert, J. Stasko
{"title":"促进可视化自然语言界面中的会话交互","authors":"Rishab Mitra, Arpit Narechania, A. Endert, J. Stasko","doi":"10.1109/VIS54862.2022.00010","DOIUrl":null,"url":null,"abstract":"Natural language (NL) toolkits enable visualization developers, who may not have a background in natural language processing (NLP), to create natural language interfaces (NLIs) for end-users to flexibly specify and interact with visualizations. However, these toolkits currently only support one-off utterances, with minimal capability to facilitate a multi-turn dialog between the user and the system. Developing NLIs with such conversational interaction capabilities remains a challenging task, requiring implementations of low-level NLP techniques to process a new query as an intent to follow-up on an older query. We extend an existing Python-based toolkit, NL4DV, that processes an NL query about a tabular dataset and returns an analytic specification containing data attributes, analytic tasks, and relevant visualizations, modeled as a JSON object. Specifically, NL4DV now enables developers to facilitate multiple simultaneous conversations about a dataset and resolve associated ambiguities, augmenting new conversational information into the output JSON object. We demonstrate these capabilities through three examples: (1) an NLI to learn aspects of the Vega-Lite grammar, (2) a mind mapping application to create free-flowing conversations, and (3) a chatbot to answer questions and resolve ambiguities.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Facilitating Conversational Interaction in Natural Language Interfaces for Visualization\",\"authors\":\"Rishab Mitra, Arpit Narechania, A. Endert, J. Stasko\",\"doi\":\"10.1109/VIS54862.2022.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural language (NL) toolkits enable visualization developers, who may not have a background in natural language processing (NLP), to create natural language interfaces (NLIs) for end-users to flexibly specify and interact with visualizations. However, these toolkits currently only support one-off utterances, with minimal capability to facilitate a multi-turn dialog between the user and the system. Developing NLIs with such conversational interaction capabilities remains a challenging task, requiring implementations of low-level NLP techniques to process a new query as an intent to follow-up on an older query. We extend an existing Python-based toolkit, NL4DV, that processes an NL query about a tabular dataset and returns an analytic specification containing data attributes, analytic tasks, and relevant visualizations, modeled as a JSON object. Specifically, NL4DV now enables developers to facilitate multiple simultaneous conversations about a dataset and resolve associated ambiguities, augmenting new conversational information into the output JSON object. We demonstrate these capabilities through three examples: (1) an NLI to learn aspects of the Vega-Lite grammar, (2) a mind mapping application to create free-flowing conversations, and (3) a chatbot to answer questions and resolve ambiguities.\",\"PeriodicalId\":190244,\"journal\":{\"name\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS54862.2022.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

自然语言(NL)工具包使没有自然语言处理(NLP)背景的可视化开发人员能够为最终用户创建自然语言接口(nli),以灵活地指定可视化并与之交互。然而,这些工具包目前只支持一次性的话语,很少有能力促进用户和系统之间的多回合对话。开发具有这种会话交互功能的nli仍然是一项具有挑战性的任务,需要实现低级NLP技术来处理新查询,作为后续旧查询的意图。我们扩展了现有的基于python的工具包NL4DV,该工具包处理关于表格数据集的NL查询,并返回包含数据属性、分析任务和相关可视化的分析规范,并将其建模为JSON对象。具体来说,NL4DV现在使开发人员能够促进关于数据集的多个同时对话,并解决相关的歧义,将新的对话信息增加到输出JSON对象中。我们通过三个例子来展示这些功能:(1)一个NLI来学习Vega-Lite语法的各个方面,(2)一个思维导图应用程序来创建自由流畅的对话,(3)一个聊天机器人来回答问题和解决歧义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facilitating Conversational Interaction in Natural Language Interfaces for Visualization
Natural language (NL) toolkits enable visualization developers, who may not have a background in natural language processing (NLP), to create natural language interfaces (NLIs) for end-users to flexibly specify and interact with visualizations. However, these toolkits currently only support one-off utterances, with minimal capability to facilitate a multi-turn dialog between the user and the system. Developing NLIs with such conversational interaction capabilities remains a challenging task, requiring implementations of low-level NLP techniques to process a new query as an intent to follow-up on an older query. We extend an existing Python-based toolkit, NL4DV, that processes an NL query about a tabular dataset and returns an analytic specification containing data attributes, analytic tasks, and relevant visualizations, modeled as a JSON object. Specifically, NL4DV now enables developers to facilitate multiple simultaneous conversations about a dataset and resolve associated ambiguities, augmenting new conversational information into the output JSON object. We demonstrate these capabilities through three examples: (1) an NLI to learn aspects of the Vega-Lite grammar, (2) a mind mapping application to create free-flowing conversations, and (3) a chatbot to answer questions and resolve ambiguities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信