{"title":"二级蛋白质折叠的非线性构象","authors":"M. Januar, A. Sulaiman, L. T. Handoko","doi":"10.1142/S2010194512005181","DOIUrl":null,"url":null,"abstract":"A model to describe the mechanism of conformational dynamics in secondary protein based on matter interactions is proposed. The approach deploys the lagrangian method by imposing certain symmetry breaking. The protein backbone is initially assumed to be nonlinear and represented by the Sine-Gordon equation, while the nonlinear external bosonic sources is represented by ϕ4 interaction. It is argued that the nonlinear source induces the folding pathway in a different way than the previous work with initially linear backbone. Also, the nonlinearity of protein backbone decreases the folding speed.","PeriodicalId":360136,"journal":{"name":"arXiv: Biological Physics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"NONLINEAR CONFORMATION OF SECONDARY PROTEIN FOLDING\",\"authors\":\"M. Januar, A. Sulaiman, L. T. Handoko\",\"doi\":\"10.1142/S2010194512005181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model to describe the mechanism of conformational dynamics in secondary protein based on matter interactions is proposed. The approach deploys the lagrangian method by imposing certain symmetry breaking. The protein backbone is initially assumed to be nonlinear and represented by the Sine-Gordon equation, while the nonlinear external bosonic sources is represented by ϕ4 interaction. It is argued that the nonlinear source induces the folding pathway in a different way than the previous work with initially linear backbone. Also, the nonlinearity of protein backbone decreases the folding speed.\",\"PeriodicalId\":360136,\"journal\":{\"name\":\"arXiv: Biological Physics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biological Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010194512005181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2010194512005181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NONLINEAR CONFORMATION OF SECONDARY PROTEIN FOLDING
A model to describe the mechanism of conformational dynamics in secondary protein based on matter interactions is proposed. The approach deploys the lagrangian method by imposing certain symmetry breaking. The protein backbone is initially assumed to be nonlinear and represented by the Sine-Gordon equation, while the nonlinear external bosonic sources is represented by ϕ4 interaction. It is argued that the nonlinear source induces the folding pathway in a different way than the previous work with initially linear backbone. Also, the nonlinearity of protein backbone decreases the folding speed.