数据集缩放和MapReduce性能

Fan Zhang, M. Sakr
{"title":"数据集缩放和MapReduce性能","authors":"Fan Zhang, M. Sakr","doi":"10.1109/IPDPSW.2013.143","DOIUrl":null,"url":null,"abstract":"Predicting execution behavior of MapReduce applications when scaling the input dataset presents a challenging problem. The difficulty lies in the distributed locations of input data and the distributed, virtualized compute resources that utilize different network substrates. The potential payoff lies in using small datasets and limited test runs to understand how applications will behave with \"big data.\" Our research has developed an in-depth understanding of MapReduce application performance and analyzed the impact of scaling input datasets. While we might expect that \"embarrassingly parallel\" MapReduce jobs should scale linearly with input dataset size, our results show that execution time sometimes increases nonlinearly. To verify our predictions, we identify a benchmark set of Map-, Shuffle-, and Reduce-intensive applications. Experimental results show that our execution-time analysis distinguishes four typical application behaviors when scaling input datasets.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dataset Scaling and MapReduce Performance\",\"authors\":\"Fan Zhang, M. Sakr\",\"doi\":\"10.1109/IPDPSW.2013.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting execution behavior of MapReduce applications when scaling the input dataset presents a challenging problem. The difficulty lies in the distributed locations of input data and the distributed, virtualized compute resources that utilize different network substrates. The potential payoff lies in using small datasets and limited test runs to understand how applications will behave with \\\"big data.\\\" Our research has developed an in-depth understanding of MapReduce application performance and analyzed the impact of scaling input datasets. While we might expect that \\\"embarrassingly parallel\\\" MapReduce jobs should scale linearly with input dataset size, our results show that execution time sometimes increases nonlinearly. To verify our predictions, we identify a benchmark set of Map-, Shuffle-, and Reduce-intensive applications. Experimental results show that our execution-time analysis distinguishes four typical application behaviors when scaling input datasets.\",\"PeriodicalId\":234552,\"journal\":{\"name\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2013.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

预测MapReduce应用程序在扩展输入数据集时的执行行为是一个具有挑战性的问题。难点在于输入数据的分布位置和使用不同网络基板的分布式虚拟化计算资源。潜在的回报在于使用小数据集和有限的测试运行来了解应用程序如何处理“大数据”。我们的研究对MapReduce应用程序的性能有了深入的了解,并分析了缩放输入数据集的影响。虽然我们可能期望“令人尴尬的并行”MapReduce作业应该随着输入数据集的大小线性扩展,但我们的结果表明,执行时间有时会非线性地增加。为了验证我们的预测,我们确定了Map、Shuffle和reduce密集型应用程序的基准集。实验结果表明,我们的执行时间分析区分了四种典型的应用程序在缩放输入数据集时的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dataset Scaling and MapReduce Performance
Predicting execution behavior of MapReduce applications when scaling the input dataset presents a challenging problem. The difficulty lies in the distributed locations of input data and the distributed, virtualized compute resources that utilize different network substrates. The potential payoff lies in using small datasets and limited test runs to understand how applications will behave with "big data." Our research has developed an in-depth understanding of MapReduce application performance and analyzed the impact of scaling input datasets. While we might expect that "embarrassingly parallel" MapReduce jobs should scale linearly with input dataset size, our results show that execution time sometimes increases nonlinearly. To verify our predictions, we identify a benchmark set of Map-, Shuffle-, and Reduce-intensive applications. Experimental results show that our execution-time analysis distinguishes four typical application behaviors when scaling input datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信