基于神经进化学习的不精确计算实时机器人任务设计权衡

Pei-Chi Huang, L. Sentis, J. Lehman, Chien-Liang Fok, A. Mok, R. Miikkulainen
{"title":"基于神经进化学习的不精确计算实时机器人任务设计权衡","authors":"Pei-Chi Huang, L. Sentis, J. Lehman, Chien-Liang Fok, A. Mok, R. Miikkulainen","doi":"10.1109/RTSS.2015.27","DOIUrl":null,"url":null,"abstract":"We present a study on the tradeoffs between three design parameters for robotic task systems that function in partially unknown and unstructured environments, and under timing constraints. The design space of these robotic tasks must incorporate at least three dimensions: (1) the amount of training effort to teach the robot to perform the task, (2) the time available to complete the task from the point when the command is given to perform the task, and (3) the quality of the result from performing the task. This paper presents a tradeoff study in this design space for a common robotic task, specifically, grasping of unknown objects in unstructured environments. The imprecise computation model is used to provide a framework for this study. The results were validated with a real robot and contribute to the development of a systematic approach for designing robotic task systems that must function in environments like flexible manufacturing systems of the future.","PeriodicalId":239882,"journal":{"name":"2015 IEEE Real-Time Systems Symposium","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tradeoffs in Real-Time Robotic Task Design with Neuroevolution Learning for Imprecise Computation\",\"authors\":\"Pei-Chi Huang, L. Sentis, J. Lehman, Chien-Liang Fok, A. Mok, R. Miikkulainen\",\"doi\":\"10.1109/RTSS.2015.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a study on the tradeoffs between three design parameters for robotic task systems that function in partially unknown and unstructured environments, and under timing constraints. The design space of these robotic tasks must incorporate at least three dimensions: (1) the amount of training effort to teach the robot to perform the task, (2) the time available to complete the task from the point when the command is given to perform the task, and (3) the quality of the result from performing the task. This paper presents a tradeoff study in this design space for a common robotic task, specifically, grasping of unknown objects in unstructured environments. The imprecise computation model is used to provide a framework for this study. The results were validated with a real robot and contribute to the development of a systematic approach for designing robotic task systems that must function in environments like flexible manufacturing systems of the future.\",\"PeriodicalId\":239882,\"journal\":{\"name\":\"2015 IEEE Real-Time Systems Symposium\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Real-Time Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2015.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2015.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了机器人任务系统在部分未知和非结构化环境下以及在时间约束下的三个设计参数之间的权衡研究。这些机器人任务的设计空间必须至少包含三个维度:(1)教机器人执行任务的训练努力的数量,(2)从给出执行任务的命令开始完成任务的可用时间,以及(3)执行任务的结果质量。本文提出了在该设计空间中对常见机器人任务的权衡研究,特别是在非结构化环境中抓取未知物体。采用不精确计算模型为本研究提供了一个框架。研究结果在一个真实的机器人上得到了验证,并有助于开发一种系统的方法来设计机器人任务系统,这些系统必须在未来的柔性制造系统等环境中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tradeoffs in Real-Time Robotic Task Design with Neuroevolution Learning for Imprecise Computation
We present a study on the tradeoffs between three design parameters for robotic task systems that function in partially unknown and unstructured environments, and under timing constraints. The design space of these robotic tasks must incorporate at least three dimensions: (1) the amount of training effort to teach the robot to perform the task, (2) the time available to complete the task from the point when the command is given to perform the task, and (3) the quality of the result from performing the task. This paper presents a tradeoff study in this design space for a common robotic task, specifically, grasping of unknown objects in unstructured environments. The imprecise computation model is used to provide a framework for this study. The results were validated with a real robot and contribute to the development of a systematic approach for designing robotic task systems that must function in environments like flexible manufacturing systems of the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信