基于共现词相关度的高效计算

Jie Mei, Xinxin Kou, Zhimin Yao, A. Rau-Chaplin, Aminul Islam, A. Mohammad, E. Milios
{"title":"基于共现词相关度的高效计算","authors":"Jie Mei, Xinxin Kou, Zhimin Yao, A. Rau-Chaplin, Aminul Islam, A. Mohammad, E. Milios","doi":"10.1145/2682571.2797088","DOIUrl":null,"url":null,"abstract":"Measuring document relatedness using unsupervised co-occurrence based word relatedness methods is a processing-time and memory consuming task. This paper introduces the application of compact data structures for efficient computation of word relatedness based on corpus statistics. The data structure is used to efficiently lookup: (1) the corpus statistics for the Common Word Relatedness Approach, (2) the pairwise word relatedness for the Algorithm Specific Word Relatedness Approach. These two approaches significantly accelerate the processing time of word relatedness methods and reduce the space cost of storing co-occurrence statistics in memory, making text mining tasks like classification and clustering based on word relatedness practical.","PeriodicalId":106339,"journal":{"name":"Proceedings of the 2015 ACM Symposium on Document Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Efficient Computation of Co-occurrence Based Word Relatedness\",\"authors\":\"Jie Mei, Xinxin Kou, Zhimin Yao, A. Rau-Chaplin, Aminul Islam, A. Mohammad, E. Milios\",\"doi\":\"10.1145/2682571.2797088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring document relatedness using unsupervised co-occurrence based word relatedness methods is a processing-time and memory consuming task. This paper introduces the application of compact data structures for efficient computation of word relatedness based on corpus statistics. The data structure is used to efficiently lookup: (1) the corpus statistics for the Common Word Relatedness Approach, (2) the pairwise word relatedness for the Algorithm Specific Word Relatedness Approach. These two approaches significantly accelerate the processing time of word relatedness methods and reduce the space cost of storing co-occurrence statistics in memory, making text mining tasks like classification and clustering based on word relatedness practical.\",\"PeriodicalId\":106339,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Symposium on Document Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2682571.2797088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2682571.2797088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

使用基于无监督共现的词相关方法测量文档相关性是一项耗费处理时间和内存的任务。本文介绍了基于语料库统计的紧凑数据结构在高效词相关计算中的应用。该数据结构用于高效查找:(1)常用词相关性方法的语料库统计信息,(2)算法特定词相关性方法的成对词相关性。这两种方法显著加快了词相关性方法的处理时间,降低了共现统计数据在内存中的存储空间成本,使得基于词相关性的分类、聚类等文本挖掘任务变得切实可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Computation of Co-occurrence Based Word Relatedness
Measuring document relatedness using unsupervised co-occurrence based word relatedness methods is a processing-time and memory consuming task. This paper introduces the application of compact data structures for efficient computation of word relatedness based on corpus statistics. The data structure is used to efficiently lookup: (1) the corpus statistics for the Common Word Relatedness Approach, (2) the pairwise word relatedness for the Algorithm Specific Word Relatedness Approach. These two approaches significantly accelerate the processing time of word relatedness methods and reduce the space cost of storing co-occurrence statistics in memory, making text mining tasks like classification and clustering based on word relatedness practical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信