YouFake:一种新的多模态假新闻分类数据集

Syeda Arooj Fatima, Adeel Zafar, K. Malik
{"title":"YouFake:一种新的多模态假新闻分类数据集","authors":"Syeda Arooj Fatima, Adeel Zafar, K. Malik","doi":"10.1109/ICAI58407.2023.10136667","DOIUrl":null,"url":null,"abstract":"With the widespread use of social media platforms (such as YouTube), fake news has become a growing concern. Identifying fake news is a challenging task, given the volume of content, the lack of fact-checking, and the disguising of fake news as true news. This study aims to provide a multi-modal fake news dataset that contains both images and texts collected from famous YouTube channels. We labeled our data into 2-way (True, False) and 6-way classes based on categories of fake news such as misleading content, manipulated content, satire/parody, and false connection according to text, thumbnail images, and content provided in videos. In addition, different transfer learning-based models are used to classify fake news using multi-modal data.","PeriodicalId":161809,"journal":{"name":"2023 3rd International Conference on Artificial Intelligence (ICAI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YouFake: A Novel Multi-Modal Dataset for Fake News Classification\",\"authors\":\"Syeda Arooj Fatima, Adeel Zafar, K. Malik\",\"doi\":\"10.1109/ICAI58407.2023.10136667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the widespread use of social media platforms (such as YouTube), fake news has become a growing concern. Identifying fake news is a challenging task, given the volume of content, the lack of fact-checking, and the disguising of fake news as true news. This study aims to provide a multi-modal fake news dataset that contains both images and texts collected from famous YouTube channels. We labeled our data into 2-way (True, False) and 6-way classes based on categories of fake news such as misleading content, manipulated content, satire/parody, and false connection according to text, thumbnail images, and content provided in videos. In addition, different transfer learning-based models are used to classify fake news using multi-modal data.\",\"PeriodicalId\":161809,\"journal\":{\"name\":\"2023 3rd International Conference on Artificial Intelligence (ICAI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Artificial Intelligence (ICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAI58407.2023.10136667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Artificial Intelligence (ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAI58407.2023.10136667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着社交媒体平台(如YouTube)的广泛使用,假新闻越来越受到关注。鉴于内容的数量,缺乏事实核查,以及假新闻伪装成真实新闻,识别假新闻是一项具有挑战性的任务。本研究旨在提供一个多模态假新闻数据集,其中包含从著名YouTube频道收集的图像和文本。根据文本、缩略图和视频中提供的内容,我们根据虚假新闻的类别(如误导内容、操纵内容、讽刺/模仿和虚假连接)将数据标记为双向(True, False)和六向类。此外,利用多模态数据,利用不同的迁移学习模型对假新闻进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YouFake: A Novel Multi-Modal Dataset for Fake News Classification
With the widespread use of social media platforms (such as YouTube), fake news has become a growing concern. Identifying fake news is a challenging task, given the volume of content, the lack of fact-checking, and the disguising of fake news as true news. This study aims to provide a multi-modal fake news dataset that contains both images and texts collected from famous YouTube channels. We labeled our data into 2-way (True, False) and 6-way classes based on categories of fake news such as misleading content, manipulated content, satire/parody, and false connection according to text, thumbnail images, and content provided in videos. In addition, different transfer learning-based models are used to classify fake news using multi-modal data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信