柔性超材料的降阶仿真

Kurt Leimer, Przemyslaw Musialski
{"title":"柔性超材料的降阶仿真","authors":"Kurt Leimer, Przemyslaw Musialski","doi":"10.1145/3424630.3425411","DOIUrl":null,"url":null,"abstract":"We propose a reduced-order simulation and optimization technique for a type of digital materials which we denote as geometric meta-materials. They are planar cellular structures, which can be fabricated in 2d and folded in 3d space and thus well shaped into sophisticated 3d surfaces. They obtain their elasticity attributes mainly from the geometry of their cellular elements and their connections. While the physical properties of the base material (i.e., the physical substance) of course influence the behavior as well, our goal is to factor them out. However, the simulation of such complex structures still comes with a high computational cost. We propose an approach to reduce this computational cost by abstracting the meso-structures and encoding the properties of their elastic deformation behavior into a different set of material parameters. We can thus obtain an approximation of the deformed pattern by simulating a simplified version of the pattern using the computed material parameters.","PeriodicalId":314162,"journal":{"name":"Proceedings of the 5th Annual ACM Symposium on Computational Fabrication","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Reduced-Order Simulation of Flexible Meta-Materials\",\"authors\":\"Kurt Leimer, Przemyslaw Musialski\",\"doi\":\"10.1145/3424630.3425411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a reduced-order simulation and optimization technique for a type of digital materials which we denote as geometric meta-materials. They are planar cellular structures, which can be fabricated in 2d and folded in 3d space and thus well shaped into sophisticated 3d surfaces. They obtain their elasticity attributes mainly from the geometry of their cellular elements and their connections. While the physical properties of the base material (i.e., the physical substance) of course influence the behavior as well, our goal is to factor them out. However, the simulation of such complex structures still comes with a high computational cost. We propose an approach to reduce this computational cost by abstracting the meso-structures and encoding the properties of their elastic deformation behavior into a different set of material parameters. We can thus obtain an approximation of the deformed pattern by simulating a simplified version of the pattern using the computed material parameters.\",\"PeriodicalId\":314162,\"journal\":{\"name\":\"Proceedings of the 5th Annual ACM Symposium on Computational Fabrication\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Annual ACM Symposium on Computational Fabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3424630.3425411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Annual ACM Symposium on Computational Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3424630.3425411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一种数字材料的降阶模拟和优化技术,我们称之为几何元材料。它们是平面细胞结构,可以在二维空间中制造并在三维空间中折叠,从而很好地塑造成复杂的三维表面。它们的弹性属性主要来自于它们的细胞单元的几何形状和它们之间的连接。虽然基础材料的物理性质(即物理物质)当然也会影响行为,但我们的目标是将它们排除在外。然而,这种复杂结构的模拟仍然具有很高的计算成本。我们提出了一种方法,通过抽象细观结构并将其弹性变形行为的性质编码为一组不同的材料参数来减少这种计算成本。因此,我们可以通过使用计算的材料参数模拟该图案的简化版本来获得变形图案的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced-Order Simulation of Flexible Meta-Materials
We propose a reduced-order simulation and optimization technique for a type of digital materials which we denote as geometric meta-materials. They are planar cellular structures, which can be fabricated in 2d and folded in 3d space and thus well shaped into sophisticated 3d surfaces. They obtain their elasticity attributes mainly from the geometry of their cellular elements and their connections. While the physical properties of the base material (i.e., the physical substance) of course influence the behavior as well, our goal is to factor them out. However, the simulation of such complex structures still comes with a high computational cost. We propose an approach to reduce this computational cost by abstracting the meso-structures and encoding the properties of their elastic deformation behavior into a different set of material parameters. We can thus obtain an approximation of the deformed pattern by simulating a simplified version of the pattern using the computed material parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信