用CELLULAR AUTOMATA方法修复红外图像

Annisa Yuniar Hidayah, Abduh Riski, Ahmad Kamsyakawuni
{"title":"用CELLULAR AUTOMATA方法修复红外图像","authors":"Annisa Yuniar Hidayah, Abduh Riski, Ahmad Kamsyakawuni","doi":"10.19184/mims.v18i2.17249","DOIUrl":null,"url":null,"abstract":"Image enhancement is needed because not all images have good quality, such as noise, too low contrast or blurry image. These problems are commonly found in images generated from infrared cameras, therefore this study uses infrared imagery as an image to be corrected. The method that will be used to improve the image, namely Cellular Automata method. The edge detection using the Prewitt operator will be used as the initial state of Cellular Automata cells. The results obtained from this research is Cellular Automata method can improve the quality of infrared image well. Visually, the Cellular Automata method successfully improves image contrast and retains the infrared image detail so as not to reduce the value of information from the image. Calculated using the Linear Index of Fuzziness, the results of the Cellular Automata method are better only on some imagery only when compared to the Histogram Equalization mode. \nKeywords: Infrared Image, Image Enhancement, Cellular Automata","PeriodicalId":264607,"journal":{"name":"Majalah Ilmiah Matematika dan Statistika","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERBAIKAN CITRA INFRA MERAH DENGAN METODE CELLULAR AUTOMATA\",\"authors\":\"Annisa Yuniar Hidayah, Abduh Riski, Ahmad Kamsyakawuni\",\"doi\":\"10.19184/mims.v18i2.17249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image enhancement is needed because not all images have good quality, such as noise, too low contrast or blurry image. These problems are commonly found in images generated from infrared cameras, therefore this study uses infrared imagery as an image to be corrected. The method that will be used to improve the image, namely Cellular Automata method. The edge detection using the Prewitt operator will be used as the initial state of Cellular Automata cells. The results obtained from this research is Cellular Automata method can improve the quality of infrared image well. Visually, the Cellular Automata method successfully improves image contrast and retains the infrared image detail so as not to reduce the value of information from the image. Calculated using the Linear Index of Fuzziness, the results of the Cellular Automata method are better only on some imagery only when compared to the Histogram Equalization mode. \\nKeywords: Infrared Image, Image Enhancement, Cellular Automata\",\"PeriodicalId\":264607,\"journal\":{\"name\":\"Majalah Ilmiah Matematika dan Statistika\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majalah Ilmiah Matematika dan Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/mims.v18i2.17249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Ilmiah Matematika dan Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/mims.v18i2.17249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像增强是必要的,因为不是所有的图像都具有良好的质量,如噪声,对比度过低或图像模糊。这些问题在红外摄像机生成的图像中普遍存在,因此本研究使用红外图像作为待校正的图像。将采用的方法来改进图像,即元胞自动机法。使用Prewitt算子的边缘检测将被用作元胞自动机单元的初始状态。研究结果表明,元胞自动机方法可以很好地提高红外图像的质量。从视觉上看,元胞自动机方法成功地提高了图像对比度,并保留了红外图像的细节,从而不降低图像中的信息价值。使用线性模糊指数计算,细胞自动机方法仅在某些图像上优于直方图均衡化模式。关键词:红外图像,图像增强,元胞自动机
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERBAIKAN CITRA INFRA MERAH DENGAN METODE CELLULAR AUTOMATA
Image enhancement is needed because not all images have good quality, such as noise, too low contrast or blurry image. These problems are commonly found in images generated from infrared cameras, therefore this study uses infrared imagery as an image to be corrected. The method that will be used to improve the image, namely Cellular Automata method. The edge detection using the Prewitt operator will be used as the initial state of Cellular Automata cells. The results obtained from this research is Cellular Automata method can improve the quality of infrared image well. Visually, the Cellular Automata method successfully improves image contrast and retains the infrared image detail so as not to reduce the value of information from the image. Calculated using the Linear Index of Fuzziness, the results of the Cellular Automata method are better only on some imagery only when compared to the Histogram Equalization mode. Keywords: Infrared Image, Image Enhancement, Cellular Automata
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信