线性判别子空间中的无监督说话人聚类

Theodoros Giannakopoulos, Sergios Petridis
{"title":"线性判别子空间中的无监督说话人聚类","authors":"Theodoros Giannakopoulos, Sergios Petridis","doi":"10.1109/ICMLA.2010.159","DOIUrl":null,"url":null,"abstract":"We present an approach for grouping single-speaker speech segments into speaker-specific clusters. Our approach is based on applying the K-means clustering algorithm to a suitable discriminant subspace, where the euclidean distance reflect speaker differences. A core feature of our approach is approximating speaker-conditional statistics, that are not available, with single-speaker segments statistics, which can be evaluated, thus making possible to apply the LDA algorithm for finding the optimal discriminative subspace, using unlabeled data. To illustrate our method, we present examples of clusters generated by our approach when applied to the ICMLA 2010 Speaker Clustering Challenge datasets.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Unsupervised Speaker Clustering in a Linear Discriminant Subspace\",\"authors\":\"Theodoros Giannakopoulos, Sergios Petridis\",\"doi\":\"10.1109/ICMLA.2010.159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach for grouping single-speaker speech segments into speaker-specific clusters. Our approach is based on applying the K-means clustering algorithm to a suitable discriminant subspace, where the euclidean distance reflect speaker differences. A core feature of our approach is approximating speaker-conditional statistics, that are not available, with single-speaker segments statistics, which can be evaluated, thus making possible to apply the LDA algorithm for finding the optimal discriminative subspace, using unlabeled data. To illustrate our method, we present examples of clusters generated by our approach when applied to the ICMLA 2010 Speaker Clustering Challenge datasets.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种方法,将单个说话人的语音片段分组到说话人特定的集群中。我们的方法是基于将K-means聚类算法应用于合适的判别子空间,其中欧几里德距离反映说话者的差异。我们的方法的一个核心特征是近似演讲者条件统计,这是不可用的,单演讲者段统计,这是可以评估的,因此可以应用LDA算法来寻找最优的判别子空间,使用未标记的数据。为了说明我们的方法,我们给出了应用于ICMLA 2010演讲者聚类挑战数据集的方法生成的聚类示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Speaker Clustering in a Linear Discriminant Subspace
We present an approach for grouping single-speaker speech segments into speaker-specific clusters. Our approach is based on applying the K-means clustering algorithm to a suitable discriminant subspace, where the euclidean distance reflect speaker differences. A core feature of our approach is approximating speaker-conditional statistics, that are not available, with single-speaker segments statistics, which can be evaluated, thus making possible to apply the LDA algorithm for finding the optimal discriminative subspace, using unlabeled data. To illustrate our method, we present examples of clusters generated by our approach when applied to the ICMLA 2010 Speaker Clustering Challenge datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信