{"title":"业务负荷和频谱占用对多频带网络高斯噪声模型性能的影响","authors":"Pedro Venda, J. Rebola, L. Cancela","doi":"10.1109/CSNDSP54353.2022.9907947","DOIUrl":null,"url":null,"abstract":"In a network scenario, wavelength division-multiplexing channels are added and dropped leading to fluctuations on the network traffic loads along the optical path. In this work, a comparison between the optical signal-to-noise ratio (OSNR) predictions of the recently proposed closed-form generalized Gaussian noise (GGN) model and a closed-form Gaussian noise (GN) model that does not take into account the stimulated Raman scattering (SRS) is performed, for different network traffic loads and spectral occupancy over the entire C+L band. In all results obtained, the maximum difference between the OSNR predictions of GN (without SRS) and GGN models closed forms is below 0.7 dB at optimum OSNR and maximum C+L band occupancy, indicating that the GN-model can also be used in C+L band transmission. For channel launch powers higher than the optimum, the OSNR differences increase up to 3 dB, being the GN-model (without SRS) unsuitable to assess the network performance in such situations.","PeriodicalId":288069,"journal":{"name":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Traffic Load and Spectral Occupancy on Gaussian Noise Models Performance for Multiband Networks\",\"authors\":\"Pedro Venda, J. Rebola, L. Cancela\",\"doi\":\"10.1109/CSNDSP54353.2022.9907947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a network scenario, wavelength division-multiplexing channels are added and dropped leading to fluctuations on the network traffic loads along the optical path. In this work, a comparison between the optical signal-to-noise ratio (OSNR) predictions of the recently proposed closed-form generalized Gaussian noise (GGN) model and a closed-form Gaussian noise (GN) model that does not take into account the stimulated Raman scattering (SRS) is performed, for different network traffic loads and spectral occupancy over the entire C+L band. In all results obtained, the maximum difference between the OSNR predictions of GN (without SRS) and GGN models closed forms is below 0.7 dB at optimum OSNR and maximum C+L band occupancy, indicating that the GN-model can also be used in C+L band transmission. For channel launch powers higher than the optimum, the OSNR differences increase up to 3 dB, being the GN-model (without SRS) unsuitable to assess the network performance in such situations.\",\"PeriodicalId\":288069,\"journal\":{\"name\":\"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNDSP54353.2022.9907947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP54353.2022.9907947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of Traffic Load and Spectral Occupancy on Gaussian Noise Models Performance for Multiband Networks
In a network scenario, wavelength division-multiplexing channels are added and dropped leading to fluctuations on the network traffic loads along the optical path. In this work, a comparison between the optical signal-to-noise ratio (OSNR) predictions of the recently proposed closed-form generalized Gaussian noise (GGN) model and a closed-form Gaussian noise (GN) model that does not take into account the stimulated Raman scattering (SRS) is performed, for different network traffic loads and spectral occupancy over the entire C+L band. In all results obtained, the maximum difference between the OSNR predictions of GN (without SRS) and GGN models closed forms is below 0.7 dB at optimum OSNR and maximum C+L band occupancy, indicating that the GN-model can also be used in C+L band transmission. For channel launch powers higher than the optimum, the OSNR differences increase up to 3 dB, being the GN-model (without SRS) unsuitable to assess the network performance in such situations.