用耳戴式传感器检测行走步态障碍

L. Atallah, O. Aziz, Benny P. L. Lo, Guang-Zhong Yang
{"title":"用耳戴式传感器检测行走步态障碍","authors":"L. Atallah, O. Aziz, Benny P. L. Lo, Guang-Zhong Yang","doi":"10.1109/BSN.2009.41","DOIUrl":null,"url":null,"abstract":"This paper investigates an ear worn sensor for the development of a gait analysis framework. Instead of explicitly defining gait features that indicate injury or impairment, an automatic method of feature extraction and selection is proposed. The proposed framework uses multi-resolution wavelet analysis and margin based feature selection. It was validated on three datasets; the first simulating a leg injury, the second simulating abdominal impairment that could result from surgery or injury and the third is a dataset collected from a patient during recovery from leg injury. The method shows a clear distinction of gait between injured and normal walking. It also illustrates the fact that using source separation before pattern classification can significantly improve the proposed gait analysis framework.","PeriodicalId":269861,"journal":{"name":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Detecting Walking Gait Impairment with an Ear-worn Sensor\",\"authors\":\"L. Atallah, O. Aziz, Benny P. L. Lo, Guang-Zhong Yang\",\"doi\":\"10.1109/BSN.2009.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates an ear worn sensor for the development of a gait analysis framework. Instead of explicitly defining gait features that indicate injury or impairment, an automatic method of feature extraction and selection is proposed. The proposed framework uses multi-resolution wavelet analysis and margin based feature selection. It was validated on three datasets; the first simulating a leg injury, the second simulating abdominal impairment that could result from surgery or injury and the third is a dataset collected from a patient during recovery from leg injury. The method shows a clear distinction of gait between injured and normal walking. It also illustrates the fact that using source separation before pattern classification can significantly improve the proposed gait analysis framework.\",\"PeriodicalId\":269861,\"journal\":{\"name\":\"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2009.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2009.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

本文研究了一种用于步态分析框架开发的耳戴式传感器。本文提出了一种自动提取和选择步态特征的方法,而不是明确定义指示损伤或损伤的步态特征。该框架采用多分辨率小波分析和基于边缘的特征选择。在三个数据集上进行了验证;第一个模拟腿部损伤,第二个模拟可能由手术或损伤引起的腹部损伤,第三个是从腿部损伤恢复期间的患者收集的数据集。该方法可以清晰地区分受伤和正常行走的步态。在模式分类之前使用源分离可以显著改善所提出的步态分析框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Walking Gait Impairment with an Ear-worn Sensor
This paper investigates an ear worn sensor for the development of a gait analysis framework. Instead of explicitly defining gait features that indicate injury or impairment, an automatic method of feature extraction and selection is proposed. The proposed framework uses multi-resolution wavelet analysis and margin based feature selection. It was validated on three datasets; the first simulating a leg injury, the second simulating abdominal impairment that could result from surgery or injury and the third is a dataset collected from a patient during recovery from leg injury. The method shows a clear distinction of gait between injured and normal walking. It also illustrates the fact that using source separation before pattern classification can significantly improve the proposed gait analysis framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信