{"title":"CNN-n-GRU:利用cnn和门控循环单元网络从原始波形信号进行端到端语音情感识别","authors":"Alaa Nfissi, W. Bouachir, N. Bouguila, B. Mishara","doi":"10.1109/ICMLA55696.2022.00116","DOIUrl":null,"url":null,"abstract":"We present CNN-n-GRU, a new end-to-end (E2E) architecture built of an n-layer convolutional neural network (CNN) followed sequentially by an n-layer Gated Recurrent Unit (GRU) for speech emotion recognition. CNNs and RNNs both exhibited promising outcomes when fed raw waveform voice inputs. This inspired our idea to combine them into a single model to maximise their potential. Instead of using handcrafted features or spectrograms, we train CNNs to recognise low-level speech representations from raw waveform, which allows the network to capture relevant narrow-band emotion characteristics. On the other hand, RNNs (GRUs in our case) can learn temporal characteristics, allowing the network to better capture the signal’s time-distributed features. Because a CNN can generate multiple levels of representation abstraction, we exploit early layers to extract high-level features, then to supply the appropriate input to subsequent RNN layers in order to aggregate long-term dependencies. By taking advantage of both CNNs and GRUs in a single model, the proposed architecture has important advantages over other models from the literature. The proposed model was evaluated using the TESS dataset and compared to state-of-the-art methods. Our experimental results demonstrate that the proposed model is more accurate than traditional classification approaches for speech emotion recognition.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN-n-GRU: end-to-end speech emotion recognition from raw waveform signal using CNNs and gated recurrent unit networks\",\"authors\":\"Alaa Nfissi, W. Bouachir, N. Bouguila, B. Mishara\",\"doi\":\"10.1109/ICMLA55696.2022.00116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present CNN-n-GRU, a new end-to-end (E2E) architecture built of an n-layer convolutional neural network (CNN) followed sequentially by an n-layer Gated Recurrent Unit (GRU) for speech emotion recognition. CNNs and RNNs both exhibited promising outcomes when fed raw waveform voice inputs. This inspired our idea to combine them into a single model to maximise their potential. Instead of using handcrafted features or spectrograms, we train CNNs to recognise low-level speech representations from raw waveform, which allows the network to capture relevant narrow-band emotion characteristics. On the other hand, RNNs (GRUs in our case) can learn temporal characteristics, allowing the network to better capture the signal’s time-distributed features. Because a CNN can generate multiple levels of representation abstraction, we exploit early layers to extract high-level features, then to supply the appropriate input to subsequent RNN layers in order to aggregate long-term dependencies. By taking advantage of both CNNs and GRUs in a single model, the proposed architecture has important advantages over other models from the literature. The proposed model was evaluated using the TESS dataset and compared to state-of-the-art methods. Our experimental results demonstrate that the proposed model is more accurate than traditional classification approaches for speech emotion recognition.\",\"PeriodicalId\":128160,\"journal\":{\"name\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA55696.2022.00116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CNN-n-GRU: end-to-end speech emotion recognition from raw waveform signal using CNNs and gated recurrent unit networks
We present CNN-n-GRU, a new end-to-end (E2E) architecture built of an n-layer convolutional neural network (CNN) followed sequentially by an n-layer Gated Recurrent Unit (GRU) for speech emotion recognition. CNNs and RNNs both exhibited promising outcomes when fed raw waveform voice inputs. This inspired our idea to combine them into a single model to maximise their potential. Instead of using handcrafted features or spectrograms, we train CNNs to recognise low-level speech representations from raw waveform, which allows the network to capture relevant narrow-band emotion characteristics. On the other hand, RNNs (GRUs in our case) can learn temporal characteristics, allowing the network to better capture the signal’s time-distributed features. Because a CNN can generate multiple levels of representation abstraction, we exploit early layers to extract high-level features, then to supply the appropriate input to subsequent RNN layers in order to aggregate long-term dependencies. By taking advantage of both CNNs and GRUs in a single model, the proposed architecture has important advantages over other models from the literature. The proposed model was evaluated using the TESS dataset and compared to state-of-the-art methods. Our experimental results demonstrate that the proposed model is more accurate than traditional classification approaches for speech emotion recognition.