{"title":"基于衍射几何理论的地面mm波长望远镜旁瓣响应建模","authors":"A. Adler, J. Gudmundsson","doi":"10.1117/12.2576309","DOIUrl":null,"url":null,"abstract":"Accurate optical modeling is important for the design and characterisation of current and next-generation experiments studying the Cosmic Microwave Background (CMB). Geometrical Optics (GO) cannot model diffractive effects. In this work, we discuss two methods that incorporate diffraction, Physical Optics (PO) and the Geometrical Theory of Diffraction (GTD). We simulate the optical response of a ground-based two-lens refractor design shielded by a ground screen with time-reversed simulations. In particular, we use GTD to determine the interplay between the design of the refractor's forebaffle and the sidelobes caused by interaction with the ground screen.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling sidelobe response for ground-based mm-wavelength telescopes with the geometrical theory of diffraction\",\"authors\":\"A. Adler, J. Gudmundsson\",\"doi\":\"10.1117/12.2576309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate optical modeling is important for the design and characterisation of current and next-generation experiments studying the Cosmic Microwave Background (CMB). Geometrical Optics (GO) cannot model diffractive effects. In this work, we discuss two methods that incorporate diffraction, Physical Optics (PO) and the Geometrical Theory of Diffraction (GTD). We simulate the optical response of a ground-based two-lens refractor design shielded by a ground screen with time-reversed simulations. In particular, we use GTD to determine the interplay between the design of the refractor's forebaffle and the sidelobes caused by interaction with the ground screen.\",\"PeriodicalId\":393026,\"journal\":{\"name\":\"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2576309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2576309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling sidelobe response for ground-based mm-wavelength telescopes with the geometrical theory of diffraction
Accurate optical modeling is important for the design and characterisation of current and next-generation experiments studying the Cosmic Microwave Background (CMB). Geometrical Optics (GO) cannot model diffractive effects. In this work, we discuss two methods that incorporate diffraction, Physical Optics (PO) and the Geometrical Theory of Diffraction (GTD). We simulate the optical response of a ground-based two-lens refractor design shielded by a ground screen with time-reversed simulations. In particular, we use GTD to determine the interplay between the design of the refractor's forebaffle and the sidelobes caused by interaction with the ground screen.