{"title":"电源变换器开关模式电磁干扰优值的定义与实现","authors":"D. Martínez-Padrón, N. Patin, E. Monmasson","doi":"10.1109/IECON49645.2022.9968852","DOIUrl":null,"url":null,"abstract":"Power transistors are a source of electromagnetic interference (EMI) during switching due to the high levels of voltage/current transient. Reducing the switching duration can reduce the EMI generation but increases the switching power losses. For this reason, a transistor driving method has to ensure an adequate trade-off between EMI and switching losses. Several driving techniques to reduce the EMI generation have been proposed in the literature. Commonly, a spectrum analysis is used to evaluate their EMI reduction, nevertheless in this paper a more synthetic figure of merit (FOM) is proposed. It is deducted from time-frequency co-spread of both rising and falling edges of switching waveforms. The main interest of FOM is that whatever the waveform, according on Heisenberg-Gabor inequality, it is proved that the lower bound of time-frequency co-spread exists and it is reached when a Gaussian pattern is used. The FOM is validated and implemented by simulation with both theoretical and practical waveforms.","PeriodicalId":125740,"journal":{"name":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","volume":"77 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Definition and Implementation of an EMI Figure of Merit for Switching Pattern in Power Converters\",\"authors\":\"D. Martínez-Padrón, N. Patin, E. Monmasson\",\"doi\":\"10.1109/IECON49645.2022.9968852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power transistors are a source of electromagnetic interference (EMI) during switching due to the high levels of voltage/current transient. Reducing the switching duration can reduce the EMI generation but increases the switching power losses. For this reason, a transistor driving method has to ensure an adequate trade-off between EMI and switching losses. Several driving techniques to reduce the EMI generation have been proposed in the literature. Commonly, a spectrum analysis is used to evaluate their EMI reduction, nevertheless in this paper a more synthetic figure of merit (FOM) is proposed. It is deducted from time-frequency co-spread of both rising and falling edges of switching waveforms. The main interest of FOM is that whatever the waveform, according on Heisenberg-Gabor inequality, it is proved that the lower bound of time-frequency co-spread exists and it is reached when a Gaussian pattern is used. The FOM is validated and implemented by simulation with both theoretical and practical waveforms.\",\"PeriodicalId\":125740,\"journal\":{\"name\":\"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"77 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON49645.2022.9968852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON49645.2022.9968852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Definition and Implementation of an EMI Figure of Merit for Switching Pattern in Power Converters
Power transistors are a source of electromagnetic interference (EMI) during switching due to the high levels of voltage/current transient. Reducing the switching duration can reduce the EMI generation but increases the switching power losses. For this reason, a transistor driving method has to ensure an adequate trade-off between EMI and switching losses. Several driving techniques to reduce the EMI generation have been proposed in the literature. Commonly, a spectrum analysis is used to evaluate their EMI reduction, nevertheless in this paper a more synthetic figure of merit (FOM) is proposed. It is deducted from time-frequency co-spread of both rising and falling edges of switching waveforms. The main interest of FOM is that whatever the waveform, according on Heisenberg-Gabor inequality, it is proved that the lower bound of time-frequency co-spread exists and it is reached when a Gaussian pattern is used. The FOM is validated and implemented by simulation with both theoretical and practical waveforms.