Kasra Mokhtari, Ali Ayub, Vidullan Surendran, Alan R. Wagner
{"title":"基于行人密度的自动驾驶汽车路径识别与风险预测","authors":"Kasra Mokhtari, Ali Ayub, Vidullan Surendran, Alan R. Wagner","doi":"10.1109/RO-MAN47096.2020.9223554","DOIUrl":null,"url":null,"abstract":"Human drivers continually use social information to inform their decision making. We believe that incorporating this information into autonomous vehicle decision making would improve performance and importantly safety. This paper investigates how information in the form of pedestrian density can be used to identify the path being travelled and predict the number of pedestrians that the vehicle will encounter along that path in the future. We present experiments which use camera data captured while driving to evaluate our methods for path recognition and pedestrian density prediction. Our results show that we can identify the vehicle’s path using only pedestrian density at 92.4% accuracy and we can predict the number of pedestrians the vehicle will encounter with an accuracy of 70.45%. These results demonstrate that pedestrian density can serve as a source of information both perhaps to augment localization and for path risk prediction.","PeriodicalId":383722,"journal":{"name":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pedestrian Density Based Path Recognition and Risk Prediction for Autonomous Vehicles\",\"authors\":\"Kasra Mokhtari, Ali Ayub, Vidullan Surendran, Alan R. Wagner\",\"doi\":\"10.1109/RO-MAN47096.2020.9223554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human drivers continually use social information to inform their decision making. We believe that incorporating this information into autonomous vehicle decision making would improve performance and importantly safety. This paper investigates how information in the form of pedestrian density can be used to identify the path being travelled and predict the number of pedestrians that the vehicle will encounter along that path in the future. We present experiments which use camera data captured while driving to evaluate our methods for path recognition and pedestrian density prediction. Our results show that we can identify the vehicle’s path using only pedestrian density at 92.4% accuracy and we can predict the number of pedestrians the vehicle will encounter with an accuracy of 70.45%. These results demonstrate that pedestrian density can serve as a source of information both perhaps to augment localization and for path risk prediction.\",\"PeriodicalId\":383722,\"journal\":{\"name\":\"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN47096.2020.9223554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN47096.2020.9223554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pedestrian Density Based Path Recognition and Risk Prediction for Autonomous Vehicles
Human drivers continually use social information to inform their decision making. We believe that incorporating this information into autonomous vehicle decision making would improve performance and importantly safety. This paper investigates how information in the form of pedestrian density can be used to identify the path being travelled and predict the number of pedestrians that the vehicle will encounter along that path in the future. We present experiments which use camera data captured while driving to evaluate our methods for path recognition and pedestrian density prediction. Our results show that we can identify the vehicle’s path using only pedestrian density at 92.4% accuracy and we can predict the number of pedestrians the vehicle will encounter with an accuracy of 70.45%. These results demonstrate that pedestrian density can serve as a source of information both perhaps to augment localization and for path risk prediction.