结构问题——数据流跟踪的新方法

Enrico Lovat, Florian Kelbert
{"title":"结构问题——数据流跟踪的新方法","authors":"Enrico Lovat, Florian Kelbert","doi":"10.1109/SPW.2014.15","DOIUrl":null,"url":null,"abstract":"Usage control (UC) is concerned with how data may or may not be used after initial access has been granted. UC requirements are expressed in terms of data (e.g. a picture, a song) which exist within a system in forms of different technical representations (containers, e.g. files, memory locations, windows). A model combining UC enforcement with data flow tracking across containers has been proposed in the literature, but it exhibits a high false positives detection rate. In this paper we propose a refined approach for data flow tracking that mitigates this over approximation problem by leveraging information about the inherent structure of the data being tracked. We propose a formal model and show some exemplary instantiations.","PeriodicalId":142224,"journal":{"name":"2014 IEEE Security and Privacy Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Structure Matters - A New Approach for Data Flow Tracking\",\"authors\":\"Enrico Lovat, Florian Kelbert\",\"doi\":\"10.1109/SPW.2014.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Usage control (UC) is concerned with how data may or may not be used after initial access has been granted. UC requirements are expressed in terms of data (e.g. a picture, a song) which exist within a system in forms of different technical representations (containers, e.g. files, memory locations, windows). A model combining UC enforcement with data flow tracking across containers has been proposed in the literature, but it exhibits a high false positives detection rate. In this paper we propose a refined approach for data flow tracking that mitigates this over approximation problem by leveraging information about the inherent structure of the data being tracked. We propose a formal model and show some exemplary instantiations.\",\"PeriodicalId\":142224,\"journal\":{\"name\":\"2014 IEEE Security and Privacy Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Security and Privacy Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW.2014.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2014.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

使用控制(UC)关注的是在授予初始访问权限后如何使用或不使用数据。UC需求是用数据(例如一张图片、一首歌)来表达的,这些数据以不同的技术表示形式(容器,例如文件、内存位置、窗口)存在于系统中。文献中已经提出了一种将UC强制执行与跨容器的数据流跟踪相结合的模型,但它显示出很高的误报检测率。在本文中,我们提出了一种数据流跟踪的改进方法,通过利用被跟踪数据的固有结构信息来缓解这种过度逼近问题。我们提出了一个形式化模型,并给出了一些示例实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure Matters - A New Approach for Data Flow Tracking
Usage control (UC) is concerned with how data may or may not be used after initial access has been granted. UC requirements are expressed in terms of data (e.g. a picture, a song) which exist within a system in forms of different technical representations (containers, e.g. files, memory locations, windows). A model combining UC enforcement with data flow tracking across containers has been proposed in the literature, but it exhibits a high false positives detection rate. In this paper we propose a refined approach for data flow tracking that mitigates this over approximation problem by leveraging information about the inherent structure of the data being tracked. We propose a formal model and show some exemplary instantiations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信