从菲律宾法理学中构建词嵌入

Elmer C. Peramo, C. Cheng, M. Cordel
{"title":"从菲律宾法理学中构建词嵌入","authors":"Elmer C. Peramo, C. Cheng, M. Cordel","doi":"10.1109/ICAIIC51459.2021.9415251","DOIUrl":null,"url":null,"abstract":"In this research, we trained nine word embedding models on a large corpus containing Philippine Supreme Court decisions, resolutions, and opinions from 1901 through 2020. We evaluated their performance in terms of accuracy on a customized 4,510-question word analogy test set in seven syntactic and semantic categories. Word2vec models fared better on semantic evaluators while fastText models were more impressive on syntactic evaluators. We also compared our word vector models to another trained on a large legal corpus from other countries.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Juris2vec: Building Word Embeddings from Philippine Jurisprudence\",\"authors\":\"Elmer C. Peramo, C. Cheng, M. Cordel\",\"doi\":\"10.1109/ICAIIC51459.2021.9415251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we trained nine word embedding models on a large corpus containing Philippine Supreme Court decisions, resolutions, and opinions from 1901 through 2020. We evaluated their performance in terms of accuracy on a customized 4,510-question word analogy test set in seven syntactic and semantic categories. Word2vec models fared better on semantic evaluators while fastText models were more impressive on syntactic evaluators. We also compared our word vector models to another trained on a large legal corpus from other countries.\",\"PeriodicalId\":432977,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC51459.2021.9415251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项研究中,我们在一个包含1901年至2020年菲律宾最高法院判决、决议和意见的大型语料库上训练了九个词嵌入模型。我们在一个定制的包含7个句法和语义类别的4510个问题的单词类比测试集上评估了它们的准确性。Word2vec模型在语义评估器上表现更好,而fastText模型在句法评估器上表现更出色。我们还将我们的词向量模型与来自其他国家的大型法律语料库的另一个模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Juris2vec: Building Word Embeddings from Philippine Jurisprudence
In this research, we trained nine word embedding models on a large corpus containing Philippine Supreme Court decisions, resolutions, and opinions from 1901 through 2020. We evaluated their performance in terms of accuracy on a customized 4,510-question word analogy test set in seven syntactic and semantic categories. Word2vec models fared better on semantic evaluators while fastText models were more impressive on syntactic evaluators. We also compared our word vector models to another trained on a large legal corpus from other countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信