使用RGB颜色通道检测文档图像伪造

S. Gornale, G. Patil, R. Benne
{"title":"使用RGB颜色通道检测文档图像伪造","authors":"S. Gornale, G. Patil, R. Benne","doi":"10.14738/tmlai.105.13126","DOIUrl":null,"url":null,"abstract":"Using advanced digital technologies and photo editing software, document images, such as typed and handwritten documents, can be manipulated in a variety of ways. The most common method of document forgery is adding or removing information. As a result of the changes made to document images, there is misinformation and misbelief in document images. Forgery detection with multiple forgery operations is challenging issue. As a result, special consideration is given in this work to the ten-class problem, in which a text can be altered using multiple forgery types. The characteristics are computed using RGB color components and GLCM texture descriptors. The method is effective for distinguishing between genuine and forged document images. A classification rate of 95.8% for forged handwritten documents and 93.11% for forged printed document images are obtained respectively. The obtained results are promising and competitive with state-of- art techniques reported in the literature.\n ","PeriodicalId":119801,"journal":{"name":"Transactions on Machine Learning and Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Document Image Forgery Detection Using RGB Color Channel\",\"authors\":\"S. Gornale, G. Patil, R. Benne\",\"doi\":\"10.14738/tmlai.105.13126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using advanced digital technologies and photo editing software, document images, such as typed and handwritten documents, can be manipulated in a variety of ways. The most common method of document forgery is adding or removing information. As a result of the changes made to document images, there is misinformation and misbelief in document images. Forgery detection with multiple forgery operations is challenging issue. As a result, special consideration is given in this work to the ten-class problem, in which a text can be altered using multiple forgery types. The characteristics are computed using RGB color components and GLCM texture descriptors. The method is effective for distinguishing between genuine and forged document images. A classification rate of 95.8% for forged handwritten documents and 93.11% for forged printed document images are obtained respectively. The obtained results are promising and competitive with state-of- art techniques reported in the literature.\\n \",\"PeriodicalId\":119801,\"journal\":{\"name\":\"Transactions on Machine Learning and Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Machine Learning and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14738/tmlai.105.13126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Machine Learning and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/tmlai.105.13126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用先进的数字技术和照片编辑软件,文档图像,如打字和手写文件,可以以各种方式进行操作。伪造文件最常见的方法是增加或删除信息。由于对文档图像进行了更改,因此存在对文档图像的错误信息和错误信念。多种伪造操作的伪造检测是一个具有挑战性的问题。因此,在这项工作中特别考虑了十类问题,其中文本可以使用多种伪造类型进行更改。使用RGB颜色分量和GLCM纹理描述符计算特征。该方法可有效地鉴别证件图像的真伪。伪造手写文件的分类率为95.8%,伪造打印文件图像的分类率为93.11%。所获得的结果是有希望的,并与文献中报道的最先进的技术竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Document Image Forgery Detection Using RGB Color Channel
Using advanced digital technologies and photo editing software, document images, such as typed and handwritten documents, can be manipulated in a variety of ways. The most common method of document forgery is adding or removing information. As a result of the changes made to document images, there is misinformation and misbelief in document images. Forgery detection with multiple forgery operations is challenging issue. As a result, special consideration is given in this work to the ten-class problem, in which a text can be altered using multiple forgery types. The characteristics are computed using RGB color components and GLCM texture descriptors. The method is effective for distinguishing between genuine and forged document images. A classification rate of 95.8% for forged handwritten documents and 93.11% for forged printed document images are obtained respectively. The obtained results are promising and competitive with state-of- art techniques reported in the literature.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信