R. Freidlin, C. J. Ohazama, A. Arai, Delia P. McGarry, J. Panza, B. Trus
{"title":"NIHmagic: 3D可视化,注册和分割工具","authors":"R. Freidlin, C. J. Ohazama, A. Arai, Delia P. McGarry, J. Panza, B. Trus","doi":"10.1117/12.384874","DOIUrl":null,"url":null,"abstract":"Interactive visualization of multi-dimensional biological images has revolutionized diagnostic and therapy planning. Extracting complementary anatomical and functional information from different imaging modalities provides a synergistic analysis capability for quantitative and qualitative evaluation of the objects under examination. We have been developing NIHmagic, a visualization tool for research and clinical use, on the SGI OnyxII Infinite Reality platform. Images are reconstructed into a 3D volume by volume rendering, a display technique that employs 3D texture mapping to provide a translucent appearance to the object. A stack of slices is rendered into a volume by an opacity mapping function, where the opacity is determined by the intensity of the voxel and its distance from the viewer. NIHmagic incorporates 3D visualization of time-sequenced images, manual registration of 2D slices, segmentation of anatomical structures, and color-coded re-mapping of intensities. Visualization of MIR, PET, CT, Ultrasound, and 3D reconstructed electron microscopy images has been accomplished using NIHmagic.","PeriodicalId":354140,"journal":{"name":"Applied Imaging Pattern Recognition","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"NIHmagic: 3D visualization, registration, and segmentation tool\",\"authors\":\"R. Freidlin, C. J. Ohazama, A. Arai, Delia P. McGarry, J. Panza, B. Trus\",\"doi\":\"10.1117/12.384874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactive visualization of multi-dimensional biological images has revolutionized diagnostic and therapy planning. Extracting complementary anatomical and functional information from different imaging modalities provides a synergistic analysis capability for quantitative and qualitative evaluation of the objects under examination. We have been developing NIHmagic, a visualization tool for research and clinical use, on the SGI OnyxII Infinite Reality platform. Images are reconstructed into a 3D volume by volume rendering, a display technique that employs 3D texture mapping to provide a translucent appearance to the object. A stack of slices is rendered into a volume by an opacity mapping function, where the opacity is determined by the intensity of the voxel and its distance from the viewer. NIHmagic incorporates 3D visualization of time-sequenced images, manual registration of 2D slices, segmentation of anatomical structures, and color-coded re-mapping of intensities. Visualization of MIR, PET, CT, Ultrasound, and 3D reconstructed electron microscopy images has been accomplished using NIHmagic.\",\"PeriodicalId\":354140,\"journal\":{\"name\":\"Applied Imaging Pattern Recognition\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Imaging Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.384874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Imaging Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.384874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NIHmagic: 3D visualization, registration, and segmentation tool
Interactive visualization of multi-dimensional biological images has revolutionized diagnostic and therapy planning. Extracting complementary anatomical and functional information from different imaging modalities provides a synergistic analysis capability for quantitative and qualitative evaluation of the objects under examination. We have been developing NIHmagic, a visualization tool for research and clinical use, on the SGI OnyxII Infinite Reality platform. Images are reconstructed into a 3D volume by volume rendering, a display technique that employs 3D texture mapping to provide a translucent appearance to the object. A stack of slices is rendered into a volume by an opacity mapping function, where the opacity is determined by the intensity of the voxel and its distance from the viewer. NIHmagic incorporates 3D visualization of time-sequenced images, manual registration of 2D slices, segmentation of anatomical structures, and color-coded re-mapping of intensities. Visualization of MIR, PET, CT, Ultrasound, and 3D reconstructed electron microscopy images has been accomplished using NIHmagic.