使用双ssid无线接入点的基于机器学习的室内移动定位-一项实验研究

Krishna Paudel, Rajan Kadel, D. Guruge
{"title":"使用双ssid无线接入点的基于机器学习的室内移动定位-一项实验研究","authors":"Krishna Paudel, Rajan Kadel, D. Guruge","doi":"10.3390/jsan11030042","DOIUrl":null,"url":null,"abstract":"Location prediction in an indoor environment is a challenge, and this has been a research trend for recent years, with many potential applications. In this paper, machine-learning-based regression algorithms and Received Signal Strength Indicator (RSSI) fingerprint data from Wireless Access Points (WAPs) with dual Service set IDentifiers (SSIDs) are used, and positioning prediction and location accuracy are compared with single SSIDs. It is found that using Wi-Fi RSSI data from dual-frequency SSIDs improves the location prediction accuracy by up to 19%. It is also found that Support Vector Regression (SVR) gives the best prediction among classical machine-learning algorithms, followed by K-Nearest Neighbour (KNN) and Linear Regression (LR). Moreover, we analyse the effect of fingerprint grid size, coverage of the Reference Points (RPs) and location of the Test Points (TPs) on the positioning prediction and location accuracy using these three best algorithms. It is found that the prediction accuracy depends upon the fingerprint grid size and the boundary of the RPs. Experimental results demonstrates that reducing fingerprint grid size improves the positioning prediction and location accuracy. Further, the result also shows that when all the TPs are inside the boundary of RPs, the prediction accuracy increases.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine-Learning-Based Indoor Mobile Positioning Using Wireless Access Points with Dual SSIDs - An Experimental Study\",\"authors\":\"Krishna Paudel, Rajan Kadel, D. Guruge\",\"doi\":\"10.3390/jsan11030042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location prediction in an indoor environment is a challenge, and this has been a research trend for recent years, with many potential applications. In this paper, machine-learning-based regression algorithms and Received Signal Strength Indicator (RSSI) fingerprint data from Wireless Access Points (WAPs) with dual Service set IDentifiers (SSIDs) are used, and positioning prediction and location accuracy are compared with single SSIDs. It is found that using Wi-Fi RSSI data from dual-frequency SSIDs improves the location prediction accuracy by up to 19%. It is also found that Support Vector Regression (SVR) gives the best prediction among classical machine-learning algorithms, followed by K-Nearest Neighbour (KNN) and Linear Regression (LR). Moreover, we analyse the effect of fingerprint grid size, coverage of the Reference Points (RPs) and location of the Test Points (TPs) on the positioning prediction and location accuracy using these three best algorithms. It is found that the prediction accuracy depends upon the fingerprint grid size and the boundary of the RPs. Experimental results demonstrates that reducing fingerprint grid size improves the positioning prediction and location accuracy. Further, the result also shows that when all the TPs are inside the boundary of RPs, the prediction accuracy increases.\",\"PeriodicalId\":288992,\"journal\":{\"name\":\"J. Sens. Actuator Networks\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Sens. Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan11030042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Sens. Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan11030042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

室内环境中的位置预测是一个挑战,这是近年来的研究趋势,具有许多潜在的应用。本文采用基于机器学习的回归算法和来自具有双服务集标识符(ssid)的无线接入点(wap)的接收信号强度指标(RSSI)指纹数据,并与单ssid进行定位预测和定位精度的比较。研究发现,使用来自双频ssid的Wi-Fi RSSI数据可将位置预测精度提高19%。研究还发现,在经典的机器学习算法中,支持向量回归(SVR)给出了最好的预测,其次是k近邻(KNN)和线性回归(LR)。此外,我们还分析了指纹网格大小、参考点的覆盖范围和测试点的位置对三种最佳算法的定位预测和定位精度的影响。结果表明,该方法的预测精度取决于指纹网格的大小和rp的边界。实验结果表明,减小指纹网格尺寸可以提高定位预测和定位精度。此外,结果还表明,当所有的tp都在rp边界内时,预测精度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine-Learning-Based Indoor Mobile Positioning Using Wireless Access Points with Dual SSIDs - An Experimental Study
Location prediction in an indoor environment is a challenge, and this has been a research trend for recent years, with many potential applications. In this paper, machine-learning-based regression algorithms and Received Signal Strength Indicator (RSSI) fingerprint data from Wireless Access Points (WAPs) with dual Service set IDentifiers (SSIDs) are used, and positioning prediction and location accuracy are compared with single SSIDs. It is found that using Wi-Fi RSSI data from dual-frequency SSIDs improves the location prediction accuracy by up to 19%. It is also found that Support Vector Regression (SVR) gives the best prediction among classical machine-learning algorithms, followed by K-Nearest Neighbour (KNN) and Linear Regression (LR). Moreover, we analyse the effect of fingerprint grid size, coverage of the Reference Points (RPs) and location of the Test Points (TPs) on the positioning prediction and location accuracy using these three best algorithms. It is found that the prediction accuracy depends upon the fingerprint grid size and the boundary of the RPs. Experimental results demonstrates that reducing fingerprint grid size improves the positioning prediction and location accuracy. Further, the result also shows that when all the TPs are inside the boundary of RPs, the prediction accuracy increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信