D. Landgren, Kevin R. Cook, D. Dykes, J. Perez, P. R. Bowden, K. Allen
{"title":"不平衡馈电的宽带毫米波天线元件","authors":"D. Landgren, Kevin R. Cook, D. Dykes, J. Perez, P. R. Bowden, K. Allen","doi":"10.1109/NAECON.2017.8268771","DOIUrl":null,"url":null,"abstract":"In this article an ultra-wideband (UWB), millimeter wave (mmWave) fragmented antenna with a single feed point is presented. The conductor region of the antenna aperture is approximately 0.5 mm by 2.0 mm or 0.07 λ × 0.25 λ at the shortest wavelength of operation. The antenna was fabricated on a 1.97 mm thick Rogers 5880LZ substrate using standard etching processes. Prior to fabrication, the antenna design was simulated across two different full-wave electromagnetic (EM) solvers, HFSS and GTRI's in-house finite-difference time-domain (FDTD) code; the two codes were in close agreement. The antenna prototype was characterized for reflection coefficient, realized gain, and principle plane patterns. These measurements closely agree with EM predictions.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A wideband mmWave antenna element with an unbalanced feed\",\"authors\":\"D. Landgren, Kevin R. Cook, D. Dykes, J. Perez, P. R. Bowden, K. Allen\",\"doi\":\"10.1109/NAECON.2017.8268771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article an ultra-wideband (UWB), millimeter wave (mmWave) fragmented antenna with a single feed point is presented. The conductor region of the antenna aperture is approximately 0.5 mm by 2.0 mm or 0.07 λ × 0.25 λ at the shortest wavelength of operation. The antenna was fabricated on a 1.97 mm thick Rogers 5880LZ substrate using standard etching processes. Prior to fabrication, the antenna design was simulated across two different full-wave electromagnetic (EM) solvers, HFSS and GTRI's in-house finite-difference time-domain (FDTD) code; the two codes were in close agreement. The antenna prototype was characterized for reflection coefficient, realized gain, and principle plane patterns. These measurements closely agree with EM predictions.\",\"PeriodicalId\":306091,\"journal\":{\"name\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2017.8268771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A wideband mmWave antenna element with an unbalanced feed
In this article an ultra-wideband (UWB), millimeter wave (mmWave) fragmented antenna with a single feed point is presented. The conductor region of the antenna aperture is approximately 0.5 mm by 2.0 mm or 0.07 λ × 0.25 λ at the shortest wavelength of operation. The antenna was fabricated on a 1.97 mm thick Rogers 5880LZ substrate using standard etching processes. Prior to fabrication, the antenna design was simulated across two different full-wave electromagnetic (EM) solvers, HFSS and GTRI's in-house finite-difference time-domain (FDTD) code; the two codes were in close agreement. The antenna prototype was characterized for reflection coefficient, realized gain, and principle plane patterns. These measurements closely agree with EM predictions.