用于预测控制的导数观测值

J. Kocijan, Douglas J. Leitht
{"title":"用于预测控制的导数观测值","authors":"J. Kocijan, Douglas J. Leitht","doi":"10.1109/MELCON.2004.1346883","DOIUrl":null,"url":null,"abstract":"Gaussian processes provide approach to probabilistic nonparametric modelling which allows a straightforward combination of measured data and local linear models in an empirical model. This is of particular importance in the identification of nonlinear dynamic systems from experimental data where usually more data are available far from equilibrium points. We illustrate the utility of such simple nonlinear predictive control example.","PeriodicalId":164818,"journal":{"name":"Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Derivative observations used in predictive control\",\"authors\":\"J. Kocijan, Douglas J. Leitht\",\"doi\":\"10.1109/MELCON.2004.1346883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian processes provide approach to probabilistic nonparametric modelling which allows a straightforward combination of measured data and local linear models in an empirical model. This is of particular importance in the identification of nonlinear dynamic systems from experimental data where usually more data are available far from equilibrium points. We illustrate the utility of such simple nonlinear predictive control example.\",\"PeriodicalId\":164818,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELCON.2004.1346883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2004.1346883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

高斯过程提供了一种概率非参数建模方法,它允许在经验模型中直接结合测量数据和局部线性模型。这在从实验数据中识别非线性动态系统时特别重要,因为通常在远离平衡点的地方可以获得更多的数据。我们举例说明了这种简单的非线性预测控制的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivative observations used in predictive control
Gaussian processes provide approach to probabilistic nonparametric modelling which allows a straightforward combination of measured data and local linear models in an empirical model. This is of particular importance in the identification of nonlinear dynamic systems from experimental data where usually more data are available far from equilibrium points. We illustrate the utility of such simple nonlinear predictive control example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信