{"title":"用于键值存储的MapReduce连接策略","authors":"Duong Van Hieu, Sucha Smanchat, P. Meesad","doi":"10.1109/JCSSE.2014.6841861","DOIUrl":null,"url":null,"abstract":"This paper analyses MapReduce join strategies used for big data analysis and mining known as map-side and reduce-side joins. The most used joins will be analysed in this paper, which are theta-join algorithms including all pair partition join, repartition join, broadcasting join, semi join, per-split semi join. This paper can be considered as a guideline for MapReduce application developers for the selection of join strategies. The analysis of several join strategies for big data analysis and mining is accompanied by comprehensive examples.","PeriodicalId":331610,"journal":{"name":"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"MapReduce join strategies for key-value storage\",\"authors\":\"Duong Van Hieu, Sucha Smanchat, P. Meesad\",\"doi\":\"10.1109/JCSSE.2014.6841861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses MapReduce join strategies used for big data analysis and mining known as map-side and reduce-side joins. The most used joins will be analysed in this paper, which are theta-join algorithms including all pair partition join, repartition join, broadcasting join, semi join, per-split semi join. This paper can be considered as a guideline for MapReduce application developers for the selection of join strategies. The analysis of several join strategies for big data analysis and mining is accompanied by comprehensive examples.\",\"PeriodicalId\":331610,\"journal\":{\"name\":\"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2014.6841861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2014.6841861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper analyses MapReduce join strategies used for big data analysis and mining known as map-side and reduce-side joins. The most used joins will be analysed in this paper, which are theta-join algorithms including all pair partition join, repartition join, broadcasting join, semi join, per-split semi join. This paper can be considered as a guideline for MapReduce application developers for the selection of join strategies. The analysis of several join strategies for big data analysis and mining is accompanied by comprehensive examples.