使用无人驾驶飞行器监测污染地区放射性的自供电无线传感器节点

Andres Gomez, M. F. Lagadec, M. Magno, L. Benini
{"title":"使用无人驾驶飞行器监测污染地区放射性的自供电无线传感器节点","authors":"Andres Gomez, M. F. Lagadec, M. Magno, L. Benini","doi":"10.1109/SAS.2015.7133627","DOIUrl":null,"url":null,"abstract":"A self-sustainable wireless sensor node for the monitoring radiation in contaminated and poorly accessible areas is presented. The node is designed to work in collaboration with an unmanned aerial vehicle used for two essential mission steps: air-deploying the wireless sensor nodes at suitable locations and acquiring data logs via ultra-low power, short-range radio communication in fly-by mode, after a wake-up routine. The system allows for the use of off-the-shelf components for defining mission, drop-zone and trajectory, for compressing data, and for communication management. The node is equipped with a low-power nuclear radiation sensor and it was designed and implemented with self-sustainability in mind as it will be deployed in hazardous, inaccessible areas. To this end, the proposed node uses a combination of complementary techniques: a low-power microcontroller with non-volatile memory, energy harvesting, adaptive power management and duty cycling, and a nano-watt wake-up radio. Experimental results show the power consumption efficiency of the solution, which achieves 70uW in sleep mode and 500uW in active mode. Finally, simulations based on actual field measurements confirm the solution's self-sustainability and illustrate the impact of different sampling rates and that of the wake-up radio.","PeriodicalId":384041,"journal":{"name":"2015 IEEE Sensors Applications Symposium (SAS)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Self-powered wireless sensor nodes for monitoring radioactivity in contaminated areas using unmanned aerial vehicles\",\"authors\":\"Andres Gomez, M. F. Lagadec, M. Magno, L. Benini\",\"doi\":\"10.1109/SAS.2015.7133627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A self-sustainable wireless sensor node for the monitoring radiation in contaminated and poorly accessible areas is presented. The node is designed to work in collaboration with an unmanned aerial vehicle used for two essential mission steps: air-deploying the wireless sensor nodes at suitable locations and acquiring data logs via ultra-low power, short-range radio communication in fly-by mode, after a wake-up routine. The system allows for the use of off-the-shelf components for defining mission, drop-zone and trajectory, for compressing data, and for communication management. The node is equipped with a low-power nuclear radiation sensor and it was designed and implemented with self-sustainability in mind as it will be deployed in hazardous, inaccessible areas. To this end, the proposed node uses a combination of complementary techniques: a low-power microcontroller with non-volatile memory, energy harvesting, adaptive power management and duty cycling, and a nano-watt wake-up radio. Experimental results show the power consumption efficiency of the solution, which achieves 70uW in sleep mode and 500uW in active mode. Finally, simulations based on actual field measurements confirm the solution's self-sustainability and illustrate the impact of different sampling rates and that of the wake-up radio.\",\"PeriodicalId\":384041,\"journal\":{\"name\":\"2015 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2015.7133627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2015.7133627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种用于污染和交通不便地区辐射监测的自持续无线传感器节点。该节点被设计为与无人机协同工作,用于两个基本任务步骤:在适当的位置空中部署无线传感器节点,并在唤醒程序后通过超低功耗、短程无线电通信以飞行模式获取数据日志。该系统允许使用现成的组件来定义任务、投放区域和轨迹,用于压缩数据和通信管理。该节点配备了一个低功率核辐射传感器,它的设计和实施考虑到了自我可持续性,因为它将部署在危险的、难以进入的地区。为此,提出的节点使用了互补技术的组合:具有非易失性存储器,能量收集,自适应电源管理和占空比的低功耗微控制器,以及纳米瓦唤醒无线电。实验结果表明,该方案的功耗效率在休眠模式下达到70uW,在活动模式下达到500uW。最后,基于实际现场测量的仿真验证了该方案的可持续性,并说明了不同采样率和唤醒无线电的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-powered wireless sensor nodes for monitoring radioactivity in contaminated areas using unmanned aerial vehicles
A self-sustainable wireless sensor node for the monitoring radiation in contaminated and poorly accessible areas is presented. The node is designed to work in collaboration with an unmanned aerial vehicle used for two essential mission steps: air-deploying the wireless sensor nodes at suitable locations and acquiring data logs via ultra-low power, short-range radio communication in fly-by mode, after a wake-up routine. The system allows for the use of off-the-shelf components for defining mission, drop-zone and trajectory, for compressing data, and for communication management. The node is equipped with a low-power nuclear radiation sensor and it was designed and implemented with self-sustainability in mind as it will be deployed in hazardous, inaccessible areas. To this end, the proposed node uses a combination of complementary techniques: a low-power microcontroller with non-volatile memory, energy harvesting, adaptive power management and duty cycling, and a nano-watt wake-up radio. Experimental results show the power consumption efficiency of the solution, which achieves 70uW in sleep mode and 500uW in active mode. Finally, simulations based on actual field measurements confirm the solution's self-sustainability and illustrate the impact of different sampling rates and that of the wake-up radio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信