{"title":"求解超奇异积分-微分方程组的数值方法","authors":"M. C. De Bonis, A. Mennouni, D. Occorsio","doi":"10.1553/etna_vol58s378","DOIUrl":null,"url":null,"abstract":". This paper is concerned with a collocation-quadrature method for solving systems of Prandtl’s integro-differential equations based on de la Vallée Poussin filtered interpolation at Chebyshev nodes. We prove stability and convergence in Hölder-Zygmund spaces of locally continuous functions. Some numerical tests are presented to examine the method’s efficacy.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A numerical method for solving systems of hypersingular integro-differential equations\",\"authors\":\"M. C. De Bonis, A. Mennouni, D. Occorsio\",\"doi\":\"10.1553/etna_vol58s378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper is concerned with a collocation-quadrature method for solving systems of Prandtl’s integro-differential equations based on de la Vallée Poussin filtered interpolation at Chebyshev nodes. We prove stability and convergence in Hölder-Zygmund spaces of locally continuous functions. Some numerical tests are presented to examine the method’s efficacy.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol58s378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol58s378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
. 本文研究了一种基于de la vall Poussin滤波插值在Chebyshev节点上求解Prandtl积分微分方程组的配积法。证明了局部连续函数在Hölder-Zygmund空间中的稳定性和收敛性。通过数值试验验证了该方法的有效性。
A numerical method for solving systems of hypersingular integro-differential equations
. This paper is concerned with a collocation-quadrature method for solving systems of Prandtl’s integro-differential equations based on de la Vallée Poussin filtered interpolation at Chebyshev nodes. We prove stability and convergence in Hölder-Zygmund spaces of locally continuous functions. Some numerical tests are presented to examine the method’s efficacy.