基于矩阵分解的图数据降维方法

Hiroto Saigo, K. Tsuda
{"title":"基于矩阵分解的图数据降维方法","authors":"Hiroto Saigo, K. Tsuda","doi":"10.4018/978-1-61350-053-8.ch011","DOIUrl":null,"url":null,"abstract":"Graph is a mathematical framework that allows us to represent and manage many real-world data such as relational data, multimedia data and biomedical data. When each data point is represented as a graph and we are given a number of graphs, a task is to extract a few common patterns that capture the property of each population. A frequent graph mining algorithm such as AGM, gSpan and Gaston can enumerate all the frequent patterns in graph data, however, the number of patterns grows exponentially, therefore it is essential to output only discriminative patterns. There are many existing researches on this topic, but this chapter focus on the use of matrix decomposition techniques, and explains the two general cases where either i) no target label is available, or ii) target label is available for each data point. The reuslting method is a branch and bound pattern mining algorithm with efficient pruning condition, and we evaluate its effectiveness on cheminformatics data. DOI: 10.4018/978-1-61350-053-8.ch011","PeriodicalId":227251,"journal":{"name":"Graph Data Management","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Matrix Decomposition-based Dimensionality Reduction on Graph Data\",\"authors\":\"Hiroto Saigo, K. Tsuda\",\"doi\":\"10.4018/978-1-61350-053-8.ch011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph is a mathematical framework that allows us to represent and manage many real-world data such as relational data, multimedia data and biomedical data. When each data point is represented as a graph and we are given a number of graphs, a task is to extract a few common patterns that capture the property of each population. A frequent graph mining algorithm such as AGM, gSpan and Gaston can enumerate all the frequent patterns in graph data, however, the number of patterns grows exponentially, therefore it is essential to output only discriminative patterns. There are many existing researches on this topic, but this chapter focus on the use of matrix decomposition techniques, and explains the two general cases where either i) no target label is available, or ii) target label is available for each data point. The reuslting method is a branch and bound pattern mining algorithm with efficient pruning condition, and we evaluate its effectiveness on cheminformatics data. DOI: 10.4018/978-1-61350-053-8.ch011\",\"PeriodicalId\":227251,\"journal\":{\"name\":\"Graph Data Management\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graph Data Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-61350-053-8.ch011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graph Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-61350-053-8.ch011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图是一个数学框架,它允许我们表示和管理许多现实世界的数据,如关系数据、多媒体数据和生物医学数据。当每个数据点都被表示为一个图,并且我们有许多图时,任务是提取一些捕获每个总体属性的常见模式。频繁图挖掘算法如AGM、gSpan和Gaston可以枚举图数据中的所有频繁模式,但由于模式数量呈指数增长,因此只输出判别模式是必要的。关于该主题已有很多研究,但本章主要关注矩阵分解技术的使用,并解释了i)没有目标标签或ii)每个数据点都有目标标签的两种一般情况。该方法是一种具有高效剪枝条件的分支定界模式挖掘算法,并对其在化学信息学数据上的有效性进行了评价。DOI: 10.4018 / 978 - 1 - 61350 - 053 - 8. - ch011
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix Decomposition-based Dimensionality Reduction on Graph Data
Graph is a mathematical framework that allows us to represent and manage many real-world data such as relational data, multimedia data and biomedical data. When each data point is represented as a graph and we are given a number of graphs, a task is to extract a few common patterns that capture the property of each population. A frequent graph mining algorithm such as AGM, gSpan and Gaston can enumerate all the frequent patterns in graph data, however, the number of patterns grows exponentially, therefore it is essential to output only discriminative patterns. There are many existing researches on this topic, but this chapter focus on the use of matrix decomposition techniques, and explains the two general cases where either i) no target label is available, or ii) target label is available for each data point. The reuslting method is a branch and bound pattern mining algorithm with efficient pruning condition, and we evaluate its effectiveness on cheminformatics data. DOI: 10.4018/978-1-61350-053-8.ch011
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信