用于函数逼近的q-高斯径向基函数链网络的进化训练

Nipotepat Muangkote, K. Sunat, S. Chiewchanwattana
{"title":"用于函数逼近的q-高斯径向基函数链网络的进化训练","authors":"Nipotepat Muangkote, K. Sunat, S. Chiewchanwattana","doi":"10.1109/JCSSE.2013.6567320","DOIUrl":null,"url":null,"abstract":"In this paper, radial basis functional-link nets (RBFLNs) based on a q-Gaussian function is proposed. In order to enhance the generalization performance of a modified radial basis function neural network and enhance the performance of the new network, the evolutionary algorithm named real-coded chemical reaction optimization (RCCRO), is presented for training the new network. A developed RCCRO, has been shown to perform well in many optimization problems. A RCCRO is employed to select the non-extensive entropic index q and the other parameters of the network. The experimental results of the function approximation show that the proposed approach can improve the performance of RBFLNs.","PeriodicalId":199516,"journal":{"name":"The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolutionary training of a q-Gaussian radial basis functional-link nets for function approximation\",\"authors\":\"Nipotepat Muangkote, K. Sunat, S. Chiewchanwattana\",\"doi\":\"10.1109/JCSSE.2013.6567320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, radial basis functional-link nets (RBFLNs) based on a q-Gaussian function is proposed. In order to enhance the generalization performance of a modified radial basis function neural network and enhance the performance of the new network, the evolutionary algorithm named real-coded chemical reaction optimization (RCCRO), is presented for training the new network. A developed RCCRO, has been shown to perform well in many optimization problems. A RCCRO is employed to select the non-extensive entropic index q and the other parameters of the network. The experimental results of the function approximation show that the proposed approach can improve the performance of RBFLNs.\",\"PeriodicalId\":199516,\"journal\":{\"name\":\"The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2013.6567320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2013.6567320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于q-高斯函数的径向基函数链网络。为了提高改进径向基函数神经网络的泛化性能,提高新网络的性能,提出了一种实数编码化学反应优化进化算法(real-coded chemical reaction optimization, RCCRO)来训练新网络。已开发的rcro在许多优化问题中表现良好。采用rcro来选择网络的非泛化熵指标q和其他参数。函数逼近的实验结果表明,该方法可以提高rbfln的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary training of a q-Gaussian radial basis functional-link nets for function approximation
In this paper, radial basis functional-link nets (RBFLNs) based on a q-Gaussian function is proposed. In order to enhance the generalization performance of a modified radial basis function neural network and enhance the performance of the new network, the evolutionary algorithm named real-coded chemical reaction optimization (RCCRO), is presented for training the new network. A developed RCCRO, has been shown to perform well in many optimization problems. A RCCRO is employed to select the non-extensive entropic index q and the other parameters of the network. The experimental results of the function approximation show that the proposed approach can improve the performance of RBFLNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信