聊天语言和大数据:增强文本到语音的转换

Hatim Abdelhak Dida, D. Chakravarthy, F. Rabbi
{"title":"聊天语言和大数据:增强文本到语音的转换","authors":"Hatim Abdelhak Dida, D. Chakravarthy, F. Rabbi","doi":"10.58496/mjbd/2023/005","DOIUrl":null,"url":null,"abstract":"Text-to-speech (TTS) conversion is a crucial technology for various applications, including accessibility, education, and entertainment. With the rapid growth of big data, TTS conversion systems face new challenges in terms of data size and diversity. In this paper, we propose to use the state-of-the-art language model ChatGPT to enhance TTS conversion for big data. We first introduce the background of TTS conversion and big data, and then review the existing TTS conversion systems and their limitations. Next, we describe the architecture and training of ChatGPT, and how it can be applied to TTS conversion. Finally, we evaluate the performance of the ChatGPT-based TTS conversion system on a large-scale real-world big data dataset, and compare it with the existing TTS systems. Our experimental results demonstrate that ChatGPT can significantly improve the quality and efficiency of TTS conversion for big data.","PeriodicalId":325612,"journal":{"name":"Mesopotamian Journal of Big Data","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ChatGPT and Big Data: Enhancing Text-to-Speech Conversion\",\"authors\":\"Hatim Abdelhak Dida, D. Chakravarthy, F. Rabbi\",\"doi\":\"10.58496/mjbd/2023/005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text-to-speech (TTS) conversion is a crucial technology for various applications, including accessibility, education, and entertainment. With the rapid growth of big data, TTS conversion systems face new challenges in terms of data size and diversity. In this paper, we propose to use the state-of-the-art language model ChatGPT to enhance TTS conversion for big data. We first introduce the background of TTS conversion and big data, and then review the existing TTS conversion systems and their limitations. Next, we describe the architecture and training of ChatGPT, and how it can be applied to TTS conversion. Finally, we evaluate the performance of the ChatGPT-based TTS conversion system on a large-scale real-world big data dataset, and compare it with the existing TTS systems. Our experimental results demonstrate that ChatGPT can significantly improve the quality and efficiency of TTS conversion for big data.\",\"PeriodicalId\":325612,\"journal\":{\"name\":\"Mesopotamian Journal of Big Data\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mesopotamian Journal of Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58496/mjbd/2023/005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mesopotamian Journal of Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58496/mjbd/2023/005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

文本到语音(TTS)转换是各种应用程序的关键技术,包括可访问性、教育和娱乐。随着大数据的快速发展,TTS转换系统在数据量和多样性方面面临新的挑战。在本文中,我们建议使用最先进的语言模型ChatGPT来增强大数据的TTS转换。我们首先介绍了TTS转换和大数据的背景,然后回顾了现有的TTS转换系统及其局限性。接下来,我们将描述ChatGPT的体系结构和训练,以及如何将其应用于TTS转换。最后,对基于chatgpt的TTS转换系统在大规模真实大数据集上的性能进行了评估,并与现有的TTS系统进行了比较。实验结果表明,ChatGPT可以显著提高大数据TTS转换的质量和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ChatGPT and Big Data: Enhancing Text-to-Speech Conversion
Text-to-speech (TTS) conversion is a crucial technology for various applications, including accessibility, education, and entertainment. With the rapid growth of big data, TTS conversion systems face new challenges in terms of data size and diversity. In this paper, we propose to use the state-of-the-art language model ChatGPT to enhance TTS conversion for big data. We first introduce the background of TTS conversion and big data, and then review the existing TTS conversion systems and their limitations. Next, we describe the architecture and training of ChatGPT, and how it can be applied to TTS conversion. Finally, we evaluate the performance of the ChatGPT-based TTS conversion system on a large-scale real-world big data dataset, and compare it with the existing TTS systems. Our experimental results demonstrate that ChatGPT can significantly improve the quality and efficiency of TTS conversion for big data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信