{"title":"杂化石墨烯纳米复合材料:热界面材料和功能能源材料","authors":"A. Dmitriev","doi":"10.5772/intechopen.89631","DOIUrl":null,"url":null,"abstract":"Most existing materials may not satisfy all the fundamental requirements of modern civilization. This chapter summarizes the latest advances in the study of hybrid graphene nanocomposites and their application as thermal interface materials and some functional energy materials, in particular, for thermal management of energy and electronic devices. The main properties of hybrid graphene nanocomposites are described. The main attention is paid to the thermal properties of such materials, in particular, thermal conductivity and the possibilities of its growth due to various changes in the morphology and other properties of nanocomposites. The technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers, and graphene flakes is considered.","PeriodicalId":415101,"journal":{"name":"Graphene Production and Application","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Hybrid Graphene Nanocomposites: Thermal Interface Materials and Functional Energy Materials\",\"authors\":\"A. Dmitriev\",\"doi\":\"10.5772/intechopen.89631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing materials may not satisfy all the fundamental requirements of modern civilization. This chapter summarizes the latest advances in the study of hybrid graphene nanocomposites and their application as thermal interface materials and some functional energy materials, in particular, for thermal management of energy and electronic devices. The main properties of hybrid graphene nanocomposites are described. The main attention is paid to the thermal properties of such materials, in particular, thermal conductivity and the possibilities of its growth due to various changes in the morphology and other properties of nanocomposites. The technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers, and graphene flakes is considered.\",\"PeriodicalId\":415101,\"journal\":{\"name\":\"Graphene Production and Application\",\"volume\":\"2017 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphene Production and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.89631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphene Production and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Graphene Nanocomposites: Thermal Interface Materials and Functional Energy Materials
Most existing materials may not satisfy all the fundamental requirements of modern civilization. This chapter summarizes the latest advances in the study of hybrid graphene nanocomposites and their application as thermal interface materials and some functional energy materials, in particular, for thermal management of energy and electronic devices. The main properties of hybrid graphene nanocomposites are described. The main attention is paid to the thermal properties of such materials, in particular, thermal conductivity and the possibilities of its growth due to various changes in the morphology and other properties of nanocomposites. The technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers, and graphene flakes is considered.