基于最优日前负荷转移的智能电网需求侧管理策略

Rajaa Naji El Idrissi, M. Ouassaid, M. Maaroufi
{"title":"基于最优日前负荷转移的智能电网需求侧管理策略","authors":"Rajaa Naji El Idrissi, M. Ouassaid, M. Maaroufi","doi":"10.1109/IRSEC.2018.8702994","DOIUrl":null,"url":null,"abstract":"In this work a load shifting for demand side management (DSM) strategy is developed. The strategy is based on an improved version of differential evolution DE, named Back Tracking Search Algorithm (BSA) is proposed in order to minimize the peak load demand and the total utility cost of three kinds of customers i.e. residential, commercial and industrial. The obtained simulation results are compared with those obtained using Particle Swarm Optimization (PSO) algorithm. This comparison highlights the effectiveness of BSA to handle a large number of different type devices.","PeriodicalId":186042,"journal":{"name":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Demand Side Management Strategy by Optimal Day-ahead Load Shifting in Smart Grid\",\"authors\":\"Rajaa Naji El Idrissi, M. Ouassaid, M. Maaroufi\",\"doi\":\"10.1109/IRSEC.2018.8702994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a load shifting for demand side management (DSM) strategy is developed. The strategy is based on an improved version of differential evolution DE, named Back Tracking Search Algorithm (BSA) is proposed in order to minimize the peak load demand and the total utility cost of three kinds of customers i.e. residential, commercial and industrial. The obtained simulation results are compared with those obtained using Particle Swarm Optimization (PSO) algorithm. This comparison highlights the effectiveness of BSA to handle a large number of different type devices.\",\"PeriodicalId\":186042,\"journal\":{\"name\":\"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRSEC.2018.8702994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2018.8702994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,开发了需求侧管理(DSM)的负荷转移策略。该策略基于差分进化算法的改进版本,提出了反向跟踪搜索算法(Back Tracking Search Algorithm, BSA),以最小化住宅、商业和工业三类用户的峰值负荷需求和总效用成本。并将仿真结果与粒子群算法进行了比较。这种比较突出了BSA处理大量不同类型设备的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demand Side Management Strategy by Optimal Day-ahead Load Shifting in Smart Grid
In this work a load shifting for demand side management (DSM) strategy is developed. The strategy is based on an improved version of differential evolution DE, named Back Tracking Search Algorithm (BSA) is proposed in order to minimize the peak load demand and the total utility cost of three kinds of customers i.e. residential, commercial and industrial. The obtained simulation results are compared with those obtained using Particle Swarm Optimization (PSO) algorithm. This comparison highlights the effectiveness of BSA to handle a large number of different type devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信