OpenMatch-v2:一个一体化的多模态基于plm的信息检索工具包

Shi Yu, Zhenghao Liu, Chenyan Xiong, Zhiyuan Liu
{"title":"OpenMatch-v2:一个一体化的多模态基于plm的信息检索工具包","authors":"Shi Yu, Zhenghao Liu, Chenyan Xiong, Zhiyuan Liu","doi":"10.1145/3539618.3591813","DOIUrl":null,"url":null,"abstract":"Pre-trained language models (PLMs) have emerged as the foundation of the most advanced Information Retrieval (IR) models. Powered by PLMs, the latest IR research has proposed novel models, new domain adaptation algorithms as well as enlarged datasets. In this paper, we present a Python-based IR toolkit OpenMatch-v2. As a full upgrade of OpenMatch proposed in 2021, OpenMatch-v2 incorporates the most recent advancements of PLM-based IR research, providing support for new, cross-modality models and enhanced domain adaptation techniques with a streamlined, optimized infrastructure. The code of OpenMatch is publicly available at https://github.com/OpenMatch/OpenMatch.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"OpenMatch-v2: An All-in-one Multi-Modality PLM-based Information Retrieval Toolkit\",\"authors\":\"Shi Yu, Zhenghao Liu, Chenyan Xiong, Zhiyuan Liu\",\"doi\":\"10.1145/3539618.3591813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pre-trained language models (PLMs) have emerged as the foundation of the most advanced Information Retrieval (IR) models. Powered by PLMs, the latest IR research has proposed novel models, new domain adaptation algorithms as well as enlarged datasets. In this paper, we present a Python-based IR toolkit OpenMatch-v2. As a full upgrade of OpenMatch proposed in 2021, OpenMatch-v2 incorporates the most recent advancements of PLM-based IR research, providing support for new, cross-modality models and enhanced domain adaptation techniques with a streamlined, optimized infrastructure. The code of OpenMatch is publicly available at https://github.com/OpenMatch/OpenMatch.\",\"PeriodicalId\":425056,\"journal\":{\"name\":\"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539618.3591813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3591813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

预训练语言模型(PLMs)已经成为最先进的信息检索(IR)模型的基础。在plm的支持下,最新的IR研究提出了新的模型,新的领域自适应算法以及扩大的数据集。在本文中,我们提出了一个基于python的IR工具包OpenMatch-v2。作为OpenMatch在2021年提出的全面升级版,OpenMatch-v2融合了基于plm的IR研究的最新进展,通过精简优化的基础设施为新的跨模态模型和增强的领域适应技术提供支持。OpenMatch的代码可在https://github.com/OpenMatch/OpenMatch上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OpenMatch-v2: An All-in-one Multi-Modality PLM-based Information Retrieval Toolkit
Pre-trained language models (PLMs) have emerged as the foundation of the most advanced Information Retrieval (IR) models. Powered by PLMs, the latest IR research has proposed novel models, new domain adaptation algorithms as well as enlarged datasets. In this paper, we present a Python-based IR toolkit OpenMatch-v2. As a full upgrade of OpenMatch proposed in 2021, OpenMatch-v2 incorporates the most recent advancements of PLM-based IR research, providing support for new, cross-modality models and enhanced domain adaptation techniques with a streamlined, optimized infrastructure. The code of OpenMatch is publicly available at https://github.com/OpenMatch/OpenMatch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信