彩色输入信号盲反卷积的新判据

P. Tsakalides, C. Nikias
{"title":"彩色输入信号盲反卷积的新判据","authors":"P. Tsakalides, C. Nikias","doi":"10.1109/ACSSC.1993.342620","DOIUrl":null,"url":null,"abstract":"In this paper, a new criterion with memory nonlinearity is introduced for blind deconvolution problems when the input signals are colored. The basic idea is to make use of the autocorrelation of the input sequence as the only statistical knowledge about the data. An adaptive weight algorithm is presented and tested with simulation examples of signals of known autocorrelation function. It is shown that the optimum memory size is directly related to the significant values of the autocorrelation function, and that the new algorithm converges faster than the Godard algorithm.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new criterion for blind deconvolution of colored input signals\",\"authors\":\"P. Tsakalides, C. Nikias\",\"doi\":\"10.1109/ACSSC.1993.342620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new criterion with memory nonlinearity is introduced for blind deconvolution problems when the input signals are colored. The basic idea is to make use of the autocorrelation of the input sequence as the only statistical knowledge about the data. An adaptive weight algorithm is presented and tested with simulation examples of signals of known autocorrelation function. It is shown that the optimum memory size is directly related to the significant values of the autocorrelation function, and that the new algorithm converges faster than the Godard algorithm.<<ETX>>\",\"PeriodicalId\":266447,\"journal\":{\"name\":\"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1993.342620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对输入信号有颜色时的盲反卷积问题,提出了一种新的带有记忆非线性的判据。其基本思想是利用输入序列的自相关性作为数据的唯一统计知识。提出了一种自适应加权算法,并用已知自相关函数信号的仿真实例进行了验证。结果表明,最优内存大小与自相关函数的显著值直接相关,新算法的收敛速度比戈达尔算法快
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new criterion for blind deconvolution of colored input signals
In this paper, a new criterion with memory nonlinearity is introduced for blind deconvolution problems when the input signals are colored. The basic idea is to make use of the autocorrelation of the input sequence as the only statistical knowledge about the data. An adaptive weight algorithm is presented and tested with simulation examples of signals of known autocorrelation function. It is shown that the optimum memory size is directly related to the significant values of the autocorrelation function, and that the new algorithm converges faster than the Godard algorithm.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信