非线性分数映射:具有幂律记忆的非线性映射

M. Edelman
{"title":"非线性分数映射:具有幂律记忆的非线性映射","authors":"M. Edelman","doi":"10.1142/9789813202740_0005","DOIUrl":null,"url":null,"abstract":"This article is a short review of the recent results on properties of nonlinear fractional maps which are maps with power- or asymptotically power-law memory. These maps demonstrate the new type of attractors - cascade of bifurcations type trajectories, power-law convergence/divergence of trajectories, period doubling bifurcations with changes in the memory parameter, intersection of trajectories, and overlapping of attractors. In the limit of small time steps these maps converge to nonlinear fractional differential equations.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On nonlinear fractional maps: Nonlinear maps with power-law memory\",\"authors\":\"M. Edelman\",\"doi\":\"10.1142/9789813202740_0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is a short review of the recent results on properties of nonlinear fractional maps which are maps with power- or asymptotically power-law memory. These maps demonstrate the new type of attractors - cascade of bifurcations type trajectories, power-law convergence/divergence of trajectories, period doubling bifurcations with changes in the memory parameter, intersection of trajectories, and overlapping of attractors. In the limit of small time steps these maps converge to nonlinear fractional differential equations.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813202740_0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813202740_0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文简要回顾了近年来关于幂律或渐近幂律记忆的非线性分数映射性质的研究结果。这些图展示了新的吸引子类型——分岔级联型轨迹、幂律收敛/发散轨迹、随记忆参数变化的周期加倍分岔、轨迹相交和吸引子重叠。在小时间步长的极限下,这些映射收敛于非线性分数阶微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On nonlinear fractional maps: Nonlinear maps with power-law memory
This article is a short review of the recent results on properties of nonlinear fractional maps which are maps with power- or asymptotically power-law memory. These maps demonstrate the new type of attractors - cascade of bifurcations type trajectories, power-law convergence/divergence of trajectories, period doubling bifurcations with changes in the memory parameter, intersection of trajectories, and overlapping of attractors. In the limit of small time steps these maps converge to nonlinear fractional differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信