金方程的非交换几何推广

Gourab Bhattacharya, M. Kontsevich
{"title":"金方程的非交换几何推广","authors":"Gourab Bhattacharya, M. Kontsevich","doi":"10.4171/irma/33-1/23","DOIUrl":null,"url":null,"abstract":"We introduce a framework in noncommutative geometry consisting of a $*$-algebra $\\mathcal A$, a bimodule $\\Omega^1$ endowed with a derivation $\\mathcal A\\to \\Omega^1$ and with a Hermitian structure $\\Omega^1\\otimes \\bar{\\Omega}^1\\to \\mathcal A$ (a \"noncommutative Kahler form\"), and a cyclic 1-cochain $\\mathcal A\\to \\mathbb C$ whose coboundary is determined by the previous structures. These data give moment map equations on the space of connections on an arbitrary finitely-generated projective $\\mathcal A$-module. As particular cases, we obtain a large class of equations in algebra (King's equations for representations of quivers, including ADHM equations), in classical gauge theory (Hermitian Yang-Mills equations, Hitchin equations, Bogomolny and Nahm equations, etc.), as well as in noncommutative gauge theory by Connes, Douglas and Schwarz. \nWe also discuss Nekrasov's beautiful proposal for re-interpreting noncommutative instantons on $\\mathbb{C}^n\\simeq \\mathbb{R}^{2n}$ as infinite-dimensional solutions of King's equation $$\\sum_{i=1}^n [T_i^\\dagger, T_i]=\\hbar\\cdot n\\cdot\\mathrm{Id}_{\\mathcal H}$$ where $\\mathcal H$ is a Hilbert space completion of a finitely-generated $\\mathbb C[T_1,\\dots,T_n]$-module (e.g. an ideal of finite codimension).","PeriodicalId":270093,"journal":{"name":"Topology and Geometry","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of King’s equation via noncommutative geometry\",\"authors\":\"Gourab Bhattacharya, M. Kontsevich\",\"doi\":\"10.4171/irma/33-1/23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a framework in noncommutative geometry consisting of a $*$-algebra $\\\\mathcal A$, a bimodule $\\\\Omega^1$ endowed with a derivation $\\\\mathcal A\\\\to \\\\Omega^1$ and with a Hermitian structure $\\\\Omega^1\\\\otimes \\\\bar{\\\\Omega}^1\\\\to \\\\mathcal A$ (a \\\"noncommutative Kahler form\\\"), and a cyclic 1-cochain $\\\\mathcal A\\\\to \\\\mathbb C$ whose coboundary is determined by the previous structures. These data give moment map equations on the space of connections on an arbitrary finitely-generated projective $\\\\mathcal A$-module. As particular cases, we obtain a large class of equations in algebra (King's equations for representations of quivers, including ADHM equations), in classical gauge theory (Hermitian Yang-Mills equations, Hitchin equations, Bogomolny and Nahm equations, etc.), as well as in noncommutative gauge theory by Connes, Douglas and Schwarz. \\nWe also discuss Nekrasov's beautiful proposal for re-interpreting noncommutative instantons on $\\\\mathbb{C}^n\\\\simeq \\\\mathbb{R}^{2n}$ as infinite-dimensional solutions of King's equation $$\\\\sum_{i=1}^n [T_i^\\\\dagger, T_i]=\\\\hbar\\\\cdot n\\\\cdot\\\\mathrm{Id}_{\\\\mathcal H}$$ where $\\\\mathcal H$ is a Hilbert space completion of a finitely-generated $\\\\mathbb C[T_1,\\\\dots,T_n]$-module (e.g. an ideal of finite codimension).\",\"PeriodicalId\":270093,\"journal\":{\"name\":\"Topology and Geometry\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/irma/33-1/23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/irma/33-1/23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在非交换几何中引入了一个框架,它由一个$*$ -代数$\mathcal A$,一个具有导数$\mathcal A\to \Omega^1$和厄米结构$\Omega^1\otimes \bar{\Omega}^1\to \mathcal A$(一种“非交换Kahler形式”)的双模$\Omega^1$和一个环1-协链$\mathcal A\to \mathbb C$组成,其共边界由前面的结构决定。这些数据给出了在任意有限生成的射影$\mathcal A$ -模块的连接空间上的矩映射方程。在特殊情况下,我们得到了代数中的一大批方程(表示颤振的King方程,包括ADHM方程),经典规范理论中的方程(厄米杨-米尔斯方程,希钦方程,Bogomolny和Nahm方程等),以及Connes, Douglas和Schwarz的非交换规范理论中的方程。我们还讨论了Nekrasov关于将$\mathbb{C}^n\simeq \mathbb{R}^{2n}$上的非交换实例重新解释为金方程$$\sum_{i=1}^n [T_i^\dagger, T_i]=\hbar\cdot n\cdot\mathrm{Id}_{\mathcal H}$$的无限维解的美丽建议,其中$\mathcal H$是有限生成的$\mathbb C[T_1,\dots,T_n]$ -模块的希尔伯特空间补全(例如有限余维的理想)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of King’s equation via noncommutative geometry
We introduce a framework in noncommutative geometry consisting of a $*$-algebra $\mathcal A$, a bimodule $\Omega^1$ endowed with a derivation $\mathcal A\to \Omega^1$ and with a Hermitian structure $\Omega^1\otimes \bar{\Omega}^1\to \mathcal A$ (a "noncommutative Kahler form"), and a cyclic 1-cochain $\mathcal A\to \mathbb C$ whose coboundary is determined by the previous structures. These data give moment map equations on the space of connections on an arbitrary finitely-generated projective $\mathcal A$-module. As particular cases, we obtain a large class of equations in algebra (King's equations for representations of quivers, including ADHM equations), in classical gauge theory (Hermitian Yang-Mills equations, Hitchin equations, Bogomolny and Nahm equations, etc.), as well as in noncommutative gauge theory by Connes, Douglas and Schwarz. We also discuss Nekrasov's beautiful proposal for re-interpreting noncommutative instantons on $\mathbb{C}^n\simeq \mathbb{R}^{2n}$ as infinite-dimensional solutions of King's equation $$\sum_{i=1}^n [T_i^\dagger, T_i]=\hbar\cdot n\cdot\mathrm{Id}_{\mathcal H}$$ where $\mathcal H$ is a Hilbert space completion of a finitely-generated $\mathbb C[T_1,\dots,T_n]$-module (e.g. an ideal of finite codimension).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信