OneMax可以使用EA+RL方法帮助优化LeadingOnes吗?

M. Buzdalov, Arina Buzdalova
{"title":"OneMax可以使用EA+RL方法帮助优化LeadingOnes吗?","authors":"M. Buzdalov, Arina Buzdalova","doi":"10.1109/CEC.2015.7257100","DOIUrl":null,"url":null,"abstract":"There exist optimization problems with the target objective, which is to be optimized, and several extra objectives, which can be helpful in the optimization process. The EA+RL method is designed to control optimization algorithms which solve problems with extra objectives. The method is based on the use of reinforcement learning for adaptive online selection of objectives.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Can OneMax help optimizing LeadingOnes using the EA+RL method?\",\"authors\":\"M. Buzdalov, Arina Buzdalova\",\"doi\":\"10.1109/CEC.2015.7257100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exist optimization problems with the target objective, which is to be optimized, and several extra objectives, which can be helpful in the optimization process. The EA+RL method is designed to control optimization algorithms which solve problems with extra objectives. The method is based on the use of reinforcement learning for adaptive online selection of objectives.\",\"PeriodicalId\":403666,\"journal\":{\"name\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2015.7257100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在优化过程中,存在着待优化目标和多个额外目标的优化问题。EA+RL方法的目的是控制优化算法解决有额外目标的问题。该方法基于使用自适应在线目标选择的强化学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can OneMax help optimizing LeadingOnes using the EA+RL method?
There exist optimization problems with the target objective, which is to be optimized, and several extra objectives, which can be helpful in the optimization process. The EA+RL method is designed to control optimization algorithms which solve problems with extra objectives. The method is based on the use of reinforcement learning for adaptive online selection of objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信