染色体物理映射的并行遗传算法

S. Bhandarkar, Jinling Huang, J. Arnold
{"title":"染色体物理映射的并行遗传算法","authors":"S. Bhandarkar, Jinling Huang, J. Arnold","doi":"10.1109/CSB.2003.1227410","DOIUrl":null,"url":null,"abstract":"Physical map reconstruction in the presence of errors is a central problem in genetics of high computational complexity. A parallel genetic algorithm for a maximum likelihood estimation-based approach to physical map reconstruction is presented. The estimation procedure entails gradient descent search for determining the optimal spacings between probes for a given probe ordering. The optimal probe ordering is determined using a genetic algorithm. A two-tier parallelization strategy is proposed wherein the gradient descent search is parallelized at the lower level and the genetic algorithm is simultaneously parallelized at the higher level. Implementation and experimental results on a network of shared-memory symmetric multiprocessors (SMPs) are presented. The genetic algorithm is seen to result in physical maps with fewer contig breaks when compared to simulated Monte Carlo algorithms such as simulated annealing and the large-step Markov chain algorithm.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A parallel genetic algorithm for physical mapping of chromosomes\",\"authors\":\"S. Bhandarkar, Jinling Huang, J. Arnold\",\"doi\":\"10.1109/CSB.2003.1227410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical map reconstruction in the presence of errors is a central problem in genetics of high computational complexity. A parallel genetic algorithm for a maximum likelihood estimation-based approach to physical map reconstruction is presented. The estimation procedure entails gradient descent search for determining the optimal spacings between probes for a given probe ordering. The optimal probe ordering is determined using a genetic algorithm. A two-tier parallelization strategy is proposed wherein the gradient descent search is parallelized at the lower level and the genetic algorithm is simultaneously parallelized at the higher level. Implementation and experimental results on a network of shared-memory symmetric multiprocessors (SMPs) are presented. The genetic algorithm is seen to result in physical maps with fewer contig breaks when compared to simulated Monte Carlo algorithms such as simulated annealing and the large-step Markov chain algorithm.\",\"PeriodicalId\":147883,\"journal\":{\"name\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSB.2003.1227410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

存在错误的物理图谱重建是高计算复杂度遗传学中的一个核心问题。提出了一种基于极大似然估计的物理地图重构并行遗传算法。估计过程需要梯度下降搜索,以确定给定探针顺序下探针之间的最佳间隔。利用遗传算法确定探针的最优排序。提出了一种双层并行化策略,下层并行化梯度下降搜索,上层并行化遗传算法。给出了共享内存对称多处理器(SMPs)网络的实现和实验结果。与模拟蒙特卡罗算法(如模拟退火和大步马尔可夫链算法)相比,遗传算法产生的物理图具有更少的连续中断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parallel genetic algorithm for physical mapping of chromosomes
Physical map reconstruction in the presence of errors is a central problem in genetics of high computational complexity. A parallel genetic algorithm for a maximum likelihood estimation-based approach to physical map reconstruction is presented. The estimation procedure entails gradient descent search for determining the optimal spacings between probes for a given probe ordering. The optimal probe ordering is determined using a genetic algorithm. A two-tier parallelization strategy is proposed wherein the gradient descent search is parallelized at the lower level and the genetic algorithm is simultaneously parallelized at the higher level. Implementation and experimental results on a network of shared-memory symmetric multiprocessors (SMPs) are presented. The genetic algorithm is seen to result in physical maps with fewer contig breaks when compared to simulated Monte Carlo algorithms such as simulated annealing and the large-step Markov chain algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信