三维人脸图像双线性分解在面部表情识别中的应用

I. Mpiperis, S. Malassiotis, M. Strintzis
{"title":"三维人脸图像双线性分解在面部表情识别中的应用","authors":"I. Mpiperis, S. Malassiotis, M. Strintzis","doi":"10.1109/WIAMIS.2009.5031417","DOIUrl":null,"url":null,"abstract":"This paper describes a novel technique for decoupling two of the main sources of variation in 3-D facial structure, the subject's identity and expression. Decoupling and controlling independently these factors is a key step in many practical applications and in this work it is achieved by modeling the face manifold with a bilinear model. Bilinear modeling, however, can only be applied to vectors, and therefore a vector representation for each face is established first. To this end, we use a generic face model that is fitted to each face under the constraint that anatomical points get aligned. The effectiveness and applicability of the proposed method is demonstrated with an application to facial expression recognition.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"BIlinear Decomposition of 3-D face images: An application to facial expression recognition\",\"authors\":\"I. Mpiperis, S. Malassiotis, M. Strintzis\",\"doi\":\"10.1109/WIAMIS.2009.5031417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel technique for decoupling two of the main sources of variation in 3-D facial structure, the subject's identity and expression. Decoupling and controlling independently these factors is a key step in many practical applications and in this work it is achieved by modeling the face manifold with a bilinear model. Bilinear modeling, however, can only be applied to vectors, and therefore a vector representation for each face is established first. To this end, we use a generic face model that is fitted to each face under the constraint that anatomical points get aligned. The effectiveness and applicability of the proposed method is demonstrated with an application to facial expression recognition.\",\"PeriodicalId\":233839,\"journal\":{\"name\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2009.5031417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文描述了一种新的技术来解耦三维面部结构变化的两个主要来源,即主体的身份和表情。这些因素的解耦和独立控制是许多实际应用中的关键步骤,在这项工作中,通过用双线性模型对面流形进行建模来实现。然而,双线性建模只能应用于向量,因此首先建立每个面的向量表示。为此,我们使用了一个通用的面部模型,该模型在解剖点对齐的约束下拟合到每个面部。通过对人脸表情识别的应用,验证了该方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BIlinear Decomposition of 3-D face images: An application to facial expression recognition
This paper describes a novel technique for decoupling two of the main sources of variation in 3-D facial structure, the subject's identity and expression. Decoupling and controlling independently these factors is a key step in many practical applications and in this work it is achieved by modeling the face manifold with a bilinear model. Bilinear modeling, however, can only be applied to vectors, and therefore a vector representation for each face is established first. To this end, we use a generic face model that is fitted to each face under the constraint that anatomical points get aligned. The effectiveness and applicability of the proposed method is demonstrated with an application to facial expression recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信