{"title":"基于扩展卡尔曼滤波的多层神经网络计算修正","authors":"Kyungsup Kim, Hui-Joon Kim, Yu-Jae Won","doi":"10.1145/3177457.3177463","DOIUrl":null,"url":null,"abstract":"A lot of learning algorithms for deep layered network are sincerely suffered from complex computation and slow convergence because of a very large number of free parameters. We need to develop an efficient algorithm for deep neural network. The Kalman filter concept can be applied to parameter estimation of neural network to improve computation performance. The algorithms based extended Kalman filter has a serious drawback in its computational complexity. We discuss how a fast algorithm should be developed for reduction in computation time.","PeriodicalId":297531,"journal":{"name":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computation Modification for Multi-layered Neural Network Using Extended Kalman Filter\",\"authors\":\"Kyungsup Kim, Hui-Joon Kim, Yu-Jae Won\",\"doi\":\"10.1145/3177457.3177463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lot of learning algorithms for deep layered network are sincerely suffered from complex computation and slow convergence because of a very large number of free parameters. We need to develop an efficient algorithm for deep neural network. The Kalman filter concept can be applied to parameter estimation of neural network to improve computation performance. The algorithms based extended Kalman filter has a serious drawback in its computational complexity. We discuss how a fast algorithm should be developed for reduction in computation time.\",\"PeriodicalId\":297531,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on Computer Modeling and Simulation\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3177457.3177463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177457.3177463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Computation Modification for Multi-layered Neural Network Using Extended Kalman Filter
A lot of learning algorithms for deep layered network are sincerely suffered from complex computation and slow convergence because of a very large number of free parameters. We need to develop an efficient algorithm for deep neural network. The Kalman filter concept can be applied to parameter estimation of neural network to improve computation performance. The algorithms based extended Kalman filter has a serious drawback in its computational complexity. We discuss how a fast algorithm should be developed for reduction in computation time.