基于人工神经网络的能量消耗估算热区建模

Andra-Laura Antonache, S. Stegaru, M. Carutasiu, Cristian Pătru
{"title":"基于人工神经网络的能量消耗估算热区建模","authors":"Andra-Laura Antonache, S. Stegaru, M. Carutasiu, Cristian Pătru","doi":"10.1109/RoEduNet51892.2020.9324890","DOIUrl":null,"url":null,"abstract":"This document describes an Artificial Neural Network (ANN) approach to modeling a thermal area to predict energy consumption. We propose the architecture for the ANN and explore the optimal configuration which yields the best results in terms of accuracy. Additionally, we validate our approach by using 3 months' data from the Passive House from the campus of University “Politehnica” of Bucharest (UPB). We implemented neural networks with various thermal energy consumption modeling (black box, grey-box) to compare the results achieved between them, but also with state of the art purely mathematically models. The best results achieved a total error of only 1.87% or 4.3 RMSE - the model and optimization of the ANN are discussed in this paper","PeriodicalId":140521,"journal":{"name":"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling a Thermal Area for Energy Consumption Estimation using Artificial Neural Networks\",\"authors\":\"Andra-Laura Antonache, S. Stegaru, M. Carutasiu, Cristian Pătru\",\"doi\":\"10.1109/RoEduNet51892.2020.9324890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This document describes an Artificial Neural Network (ANN) approach to modeling a thermal area to predict energy consumption. We propose the architecture for the ANN and explore the optimal configuration which yields the best results in terms of accuracy. Additionally, we validate our approach by using 3 months' data from the Passive House from the campus of University “Politehnica” of Bucharest (UPB). We implemented neural networks with various thermal energy consumption modeling (black box, grey-box) to compare the results achieved between them, but also with state of the art purely mathematically models. The best results achieved a total error of only 1.87% or 4.3 RMSE - the model and optimization of the ANN are discussed in this paper\",\"PeriodicalId\":140521,\"journal\":{\"name\":\"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoEduNet51892.2020.9324890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoEduNet51892.2020.9324890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种人工神经网络(ANN)方法来建模热区域以预测能量消耗。我们提出了人工神经网络的体系结构,并探索了在精度方面产生最佳结果的最优配置。此外,我们通过使用布加勒斯特“Politehnica”大学(UPB)校园被动式房屋3个月的数据来验证我们的方法。我们使用各种热能消耗模型(黑盒,灰盒)实现神经网络,以比较它们之间取得的结果,以及最先进的纯数学模型。最佳结果总误差仅为1.87%或4.3 RMSE,本文讨论了人工神经网络的模型和优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling a Thermal Area for Energy Consumption Estimation using Artificial Neural Networks
This document describes an Artificial Neural Network (ANN) approach to modeling a thermal area to predict energy consumption. We propose the architecture for the ANN and explore the optimal configuration which yields the best results in terms of accuracy. Additionally, we validate our approach by using 3 months' data from the Passive House from the campus of University “Politehnica” of Bucharest (UPB). We implemented neural networks with various thermal energy consumption modeling (black box, grey-box) to compare the results achieved between them, but also with state of the art purely mathematically models. The best results achieved a total error of only 1.87% or 4.3 RMSE - the model and optimization of the ANN are discussed in this paper
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信