ReLU在反演中的可解释性

Boaz Ilan, A. Ranganath, Jacqueline Alvarez, Shilpa Khatri, Roummel F. Marcia
{"title":"ReLU在反演中的可解释性","authors":"Boaz Ilan, A. Ranganath, Jacqueline Alvarez, Shilpa Khatri, Roummel F. Marcia","doi":"10.1109/ICMLA55696.2022.00192","DOIUrl":null,"url":null,"abstract":"Interpretability continues to be a focus of much research in deep neural network. In this work, we focus on the mathematical interpretability of fully-connected neural networks, especially those that use a rectified linear unit (ReLU) activation function. Our analysis elucidates the difficulty of approximating the reciprocal function. Notwithstanding, using the ReLU activation function halves the error compared with a linear model. In addition, one might have expected the errors to increase only towards the singular point x = 0, but both the linear and ReLU errors are fairly oscillatory and increase near both edge points.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretability of ReLU for Inversion\",\"authors\":\"Boaz Ilan, A. Ranganath, Jacqueline Alvarez, Shilpa Khatri, Roummel F. Marcia\",\"doi\":\"10.1109/ICMLA55696.2022.00192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interpretability continues to be a focus of much research in deep neural network. In this work, we focus on the mathematical interpretability of fully-connected neural networks, especially those that use a rectified linear unit (ReLU) activation function. Our analysis elucidates the difficulty of approximating the reciprocal function. Notwithstanding, using the ReLU activation function halves the error compared with a linear model. In addition, one might have expected the errors to increase only towards the singular point x = 0, but both the linear and ReLU errors are fairly oscillatory and increase near both edge points.\",\"PeriodicalId\":128160,\"journal\":{\"name\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA55696.2022.00192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可解释性一直是深度神经网络研究的焦点。在这项工作中,我们专注于全连接神经网络的数学可解释性,特别是那些使用整流线性单元(ReLU)激活函数的神经网络。我们的分析说明了近似互反函数的困难。尽管如此,与线性模型相比,使用ReLU激活函数可以将误差减半。此外,人们可能会期望误差只在奇异点x = 0处增加,但线性和ReLU误差都是相当振荡的,并且在两个边缘点附近都增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretability of ReLU for Inversion
Interpretability continues to be a focus of much research in deep neural network. In this work, we focus on the mathematical interpretability of fully-connected neural networks, especially those that use a rectified linear unit (ReLU) activation function. Our analysis elucidates the difficulty of approximating the reciprocal function. Notwithstanding, using the ReLU activation function halves the error compared with a linear model. In addition, one might have expected the errors to increase only towards the singular point x = 0, but both the linear and ReLU errors are fairly oscillatory and increase near both edge points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信