基于泛型演化神经模糊推理系统的复杂多输入多输出系统在线辨识

Mahardhika Pratama, S. Anavatti, M. Garratt, E. Lughofer
{"title":"基于泛型演化神经模糊推理系统的复杂多输入多输出系统在线辨识","authors":"Mahardhika Pratama, S. Anavatti, M. Garratt, E. Lughofer","doi":"10.1109/EAIS.2013.6604112","DOIUrl":null,"url":null,"abstract":"Nowadays, unmanned aerial vehicles (UAV) play a noteworthy role in miscellaneous defence and civilian operation. A major facet in the UAV control system is an identification phase feeding the valid and up-to-date information of the system dynamic in order to generate proper adaptive control action to handle various UAV maneuvers. UAV, however, constitutes a complex system possessing a highly non-linear property. Conversely, the learning environment in modeling UAV's dynamic varies overtime and demands online learning scheme encouraging a fully adaptive and evolving algorithm with a mild computational load to settle the task. In contrast, contemporaneous literatures scrutinizing the identification of UAV dynamic yet rely on offline or batched learning procedures. Evolving neuro-fuzzy system (ENFS) where the landmarks are flexible rule base and usable in the time-critical applications offers a promising impetus in the UAV research field, and in particular its identification standpoint. The principle cornerstone is ENFS can commence its learning mechanism from scratch with an empty rule base and very limited expert knowledge. Nonetheless, it can perform automatic knowledge building from streaming data without catastrophic forgetting previous valid knowledge which is alike autonomous mental development of human brain. This paper elaborates the identification of rotary wing UAV based on our incipient ENFS algorithm termed generic evolving neuro-fuzzy system (GENEFIS). In summary, our algorithm can not only trace footprint of the UAV dynamic but also ameliorate the performance of existing ENFS in terms of predictive quality and resultant rule base burden.","PeriodicalId":289995,"journal":{"name":"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Online identification of complex multi-input-multi-output system based on generic evolving neuro-fuzzy inference system\",\"authors\":\"Mahardhika Pratama, S. Anavatti, M. Garratt, E. Lughofer\",\"doi\":\"10.1109/EAIS.2013.6604112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, unmanned aerial vehicles (UAV) play a noteworthy role in miscellaneous defence and civilian operation. A major facet in the UAV control system is an identification phase feeding the valid and up-to-date information of the system dynamic in order to generate proper adaptive control action to handle various UAV maneuvers. UAV, however, constitutes a complex system possessing a highly non-linear property. Conversely, the learning environment in modeling UAV's dynamic varies overtime and demands online learning scheme encouraging a fully adaptive and evolving algorithm with a mild computational load to settle the task. In contrast, contemporaneous literatures scrutinizing the identification of UAV dynamic yet rely on offline or batched learning procedures. Evolving neuro-fuzzy system (ENFS) where the landmarks are flexible rule base and usable in the time-critical applications offers a promising impetus in the UAV research field, and in particular its identification standpoint. The principle cornerstone is ENFS can commence its learning mechanism from scratch with an empty rule base and very limited expert knowledge. Nonetheless, it can perform automatic knowledge building from streaming data without catastrophic forgetting previous valid knowledge which is alike autonomous mental development of human brain. This paper elaborates the identification of rotary wing UAV based on our incipient ENFS algorithm termed generic evolving neuro-fuzzy system (GENEFIS). In summary, our algorithm can not only trace footprint of the UAV dynamic but also ameliorate the performance of existing ENFS in terms of predictive quality and resultant rule base burden.\",\"PeriodicalId\":289995,\"journal\":{\"name\":\"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2013.6604112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2013.6604112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

目前,无人机在各种国防和民用作战中发挥着重要作用。无人机控制系统的一个主要方面是识别阶段,该阶段向系统动态提供有效和最新的信息,以产生适当的自适应控制动作来处理各种无人机机动。然而,无人机是一个具有高度非线性特性的复杂系统。相反,无人机动态建模的学习环境随着时间的推移而变化,需要在线学习方案,需要一种计算负荷较小的完全自适应进化算法来解决任务。相比之下,同期的文献研究无人机的动态识别,但依赖于离线或批量学习过程。演化神经模糊系统(ENFS)具有灵活的规则库和可用于时间关键应用的特征,为无人机研究领域提供了一个有希望的动力,特别是它的识别立场。基本的基石是ENFS可以用一个空白的规则库和非常有限的专家知识从头开始它的学习机制。然而,它可以从流数据中自动构建知识,而不会灾难性地忘记之前的有效知识,这类似于人类大脑的自主智力发展。本文详细阐述了基于通用进化神经模糊系统(GENEFIS)的初始ENFS算法的旋翼无人机辨识。综上所述,该算法不仅可以动态跟踪无人机的足迹,而且在预测质量和生成规则库负担方面改善了现有ENFS的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online identification of complex multi-input-multi-output system based on generic evolving neuro-fuzzy inference system
Nowadays, unmanned aerial vehicles (UAV) play a noteworthy role in miscellaneous defence and civilian operation. A major facet in the UAV control system is an identification phase feeding the valid and up-to-date information of the system dynamic in order to generate proper adaptive control action to handle various UAV maneuvers. UAV, however, constitutes a complex system possessing a highly non-linear property. Conversely, the learning environment in modeling UAV's dynamic varies overtime and demands online learning scheme encouraging a fully adaptive and evolving algorithm with a mild computational load to settle the task. In contrast, contemporaneous literatures scrutinizing the identification of UAV dynamic yet rely on offline or batched learning procedures. Evolving neuro-fuzzy system (ENFS) where the landmarks are flexible rule base and usable in the time-critical applications offers a promising impetus in the UAV research field, and in particular its identification standpoint. The principle cornerstone is ENFS can commence its learning mechanism from scratch with an empty rule base and very limited expert knowledge. Nonetheless, it can perform automatic knowledge building from streaming data without catastrophic forgetting previous valid knowledge which is alike autonomous mental development of human brain. This paper elaborates the identification of rotary wing UAV based on our incipient ENFS algorithm termed generic evolving neuro-fuzzy system (GENEFIS). In summary, our algorithm can not only trace footprint of the UAV dynamic but also ameliorate the performance of existing ENFS in terms of predictive quality and resultant rule base burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信