基于多目标选择RBF网络的非线性动态系统辨识

N. Kondo, T. Hatanaka, K. Uosaki
{"title":"基于多目标选择RBF网络的非线性动态系统辨识","authors":"N. Kondo, T. Hatanaka, K. Uosaki","doi":"10.1109/MCDM.2007.369426","DOIUrl":null,"url":null,"abstract":"In this paper, nonlinear dynamic system identification by using multiobjectively selected RBF network is considered. RBF networks are widely used as a model structure for nonlinear systems. The determination of its structure that is the number of basis functions is prior important step in system identification, and the tradeoff between model complexity and accuracy exists in this problem. By using multiobjective evolutionary algorithms, the candidates of the RBF network structure are obtained in the sense of Pareto optimality. We discuss an application to system identification by using such RBF networks having Pareto optimal structures. Some numerical simulations for nonlinear dynamic systems are carried out to show the applicability of the proposed approach.","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Nonlinear Dynamic System Identification Based on Multiobjectively Selected RBF Networks\",\"authors\":\"N. Kondo, T. Hatanaka, K. Uosaki\",\"doi\":\"10.1109/MCDM.2007.369426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, nonlinear dynamic system identification by using multiobjectively selected RBF network is considered. RBF networks are widely used as a model structure for nonlinear systems. The determination of its structure that is the number of basis functions is prior important step in system identification, and the tradeoff between model complexity and accuracy exists in this problem. By using multiobjective evolutionary algorithms, the candidates of the RBF network structure are obtained in the sense of Pareto optimality. We discuss an application to system identification by using such RBF networks having Pareto optimal structures. Some numerical simulations for nonlinear dynamic systems are carried out to show the applicability of the proposed approach.\",\"PeriodicalId\":306422,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2007.369426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文研究了基于多目标选择RBF网络的非线性动态系统辨识问题。RBF网络作为非线性系统的一种模型结构得到了广泛的应用。其结构即基函数个数的确定是系统辨识的重要一步,在此问题中存在着模型复杂度与精度之间的权衡。采用多目标进化算法,获得了Pareto最优意义下的候选RBF网络结构。讨论了具有Pareto最优结构的RBF网络在系统辨识中的应用。对非线性动态系统进行了数值模拟,验证了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Dynamic System Identification Based on Multiobjectively Selected RBF Networks
In this paper, nonlinear dynamic system identification by using multiobjectively selected RBF network is considered. RBF networks are widely used as a model structure for nonlinear systems. The determination of its structure that is the number of basis functions is prior important step in system identification, and the tradeoff between model complexity and accuracy exists in this problem. By using multiobjective evolutionary algorithms, the candidates of the RBF network structure are obtained in the sense of Pareto optimality. We discuss an application to system identification by using such RBF networks having Pareto optimal structures. Some numerical simulations for nonlinear dynamic systems are carried out to show the applicability of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信